Article metrics

  • citations in SCindeks: 0
  • citations in Google Scholar:[=>]
  • visits in previous 30 days:26
  • full-text downloads in 30 days:10
article: 6 from 7  
Back back to result list
Fizička kultura
2017, vol. 71, iss. 1, pp. 55-62
article language: Serbian, English
document type: Review Paper
doi:10.5937/fizkul1701055N

Creative Commons License 4.0
Non spirographic or noninvasive methods to estimate anaerobic treshold
aAutonomni univerzitet Čihuahua, Fakultet nauka o fizičkoj kulturi, Meksiko
bDržavni univerzitet Nju Meksiko, SAD
cUniversity of Belgrade, Faculty of Sports and Physical Education

e-mail: Jnajera@uach.mx

Abstract

In the world of sports research, there are different ways to determinate physical conditioning, ranging from expensive laboratory-invasive methods to cheap, field based-non-invasive methods. The field based-non-invasive test maintains good reliability and low cost using physiological parameters such heart rate, saliva electrolytes or lactate, perceived exertion and electromyography among others. These parameters can be used to estimate anaerobic threshold (AnT) to predict sport performance, redirect training and can help coaches and athletes to be more competitive. However, each of this parameter has some particularities and controversy due to different results reported by specialist. These differences may be explained by protocol testing used, sport level sample, starting intensity or number of levels among others. Despite this, they still have good reproducibility and applications on field based test protocols. Mentioned tests could be used in a large scale, and more often, with paying attention about level of correlation with original invasive tests, and percent of possible mistake in estimation process. Cheaper, and simpler tests (instead subjective estimation of training load) allows using more precise planning and changing volume, and intensity of training, for coaches, and athletes, that have needed level of education and less money. Athletes comfort, and possible high frequency of testing during non - invasive test, also must be emphasized as an advantage during training evaluation process.

Keywords

hart rate; saliva; perceived exertion; electromyography; blood lactate; ergometry

References

Newly uploaded article: references checking, normalizing and linking in progress.
Bocanegra, O.L., Diaz, M.M., Teixeira, R.R., Soares, S.S., & Espindola, F.S. (2012). Determination of the lactate threshold by means of salivary biomarkers: chromogranin A as novel marker of exercise intensity. European Journal of Applied Physiology, 112(9), 3195- 3203.
Bodner, M.E., & Rhodes, E.C. (2000). A review of the concept of the heart rate deflection point. Sports Medicine, 30(1), 31-46.
Borg, G.A. (1982). Psychophysical bases of perceived exertion. Medicine & Sciences in Sports & Exercise, 14(5), 377-381.
Bortolini, M.S., De Agostini, G.G., Reis, I.T., Silva Lamounier, R.P.M., Blumberg, J.B., & Espindola, F.S. (2009). Total protein of whole saliva as a biomarker of anaerobic threshold. Research quarterly for exercise and sport, 80(3), 604-610.
Buchheit, M., Solano, R., & Millet, G.P. (2007). Heart-rate deflection point and the second heartrate variability threshold during running exercise in trained boys. Pediatric Exercise Science, 19(2),192-204.
Carvalho, V.O., Bocchi, E.A., & Guimarães, G.V. (2009). The Borg Scale as an Important Tool of Self-Monitoring and Self-Regulation of Exercise Prescription in Heart Failure Patients During Hydrotherapy A Randomized Blinded Controlled Trial. Circulation Journal, 73(10), 1871-1876.
Claver, J.B., Mirón, M.V., & Capitán-Vallvey, L. (2009). Disposable electrochemiluminescent bio-sensor for lactate determination in saliva. Analyst, 134(7), 1423-1432.
Conconi, F., Ferrari, M., Ziglio, P., Droghetti, P., Borsetto, C., Casoni, I., Paolini, A. (1982). Determination of the anaerobic threshold by a non-invasive field test in running and other sport activities: Paper presented at the Current topics in sports medicine, World Congress, Vienna.
Davis, J.A. (1985). Anaerobic threshold: review of the concept and directions for future research. Medicine and Science in Sports and Exercise, 17(1), 6-21.
Damnjanović, I. (2016). Neinvazivne i invazivne metode za procenu individualnog anaerobnog praga [Non-invasive and invasive methods for assessing individual anaerobic threshold. In Serbian] (Unpublished Bchler Thesis). Univerzitet u Beogradu, Fakultet Sporta i fizičkog vaspitanja.
de Assis, P.P., Piubelli, C.V., Mello, R.G., Pereira, D.J., Guerra, R., & Silva, M.d.A.P. (2015). The relationship between the heart rate deflection point test and maximal lactate steady state. The Journal of sports medicine and physical fitness, 11, 124-128.
Debray, P., & Dey, S.K. (2007). A comparison of the point of deflection from linearity of heart rate and the ventilatory threshold in the determination of the anaerobic threshold in Indian boys. Journal of physiological anthropology, 26(1), 31-37.
e Silva, A.C., Dias, M.R.C., Franco, V.H.P., de Lima, J.R.P., & da Silva Novaes, J. (2008). Estimate of the threshold of Conconi through the Borg’s scale in cycloergometer. Fitness & performance journal, 4 (4), 215-219.
Forti, M., Zamunér, A.R., Kunz, V.C., Salviati, M.R., Nery, T.A.G., & Silva, E.d. (2014). Ratings of perceived exertion at anaerobic threshold in patients with coronary artery disease. Fisioterapia e Pesquisa, 21(2), 113-119.
Grant, S., Aitchison, T., Henderson, E., Christie, J., Zare, S., McMurray, J., & Dargie, H. (1999). A comparison of the reproducibility and the sensitivity to change of visual analogue scales, Borg scales, and Likert scales in normal subjects during submaximal exercise. Chest Journal, 116(5), 1208-1217.
Grujić, N., Barak, O., Drapšin, M., Karaba-Jakovljević, D., Klašnja, A., Lukač, D., Baćanović, M., Brkić, P., Vasić, G., Drenjančević, I., Ibročić, P., Jakovljević, Đ., Mitrović, D., Ponorac, N., Radoš, B., Rajković, Ž., Ćeranić, S. (2017). Fiziologija sporta [Sport Physiology. In Serbian]. Novi Sad: Univerzitet u Novom Sadu, Medicinski Fakultet.
Helal, J., Guezennec, C., & Goubel, F. (1987). The aerobic-anaerobic transition: re-examination of the threshold concept including an electromyographic approach. European journal of applied physiology and occupational physiology, 56(6), 643-649.
Ignjatović, A., Hofmann, P., & Radovanović, D. (2008). Non-invasive determination of the anaerobic threshold based on the heart rate deflection point. Facta universitatis-series: Physical Education and Sport, 6(1), 1-10.
Ilić, N., & Rajković, Ž. (2009): Monitoring treninga kroz puls i brzinu u različitim zonama intenziteta u cikličnim sportovima tipa izdržljivosti [Monitoring the training through the pulse and intensity in different zones in a cyclic endurance sports type. In Serbian], First national seminar for sports coaches of the Republic of Serbia, (pp. 136-154). Belgrade: Republic Institute for Sports.
Lopez-Chicharro, J., Calvo, F., Alvarez, J., Vaquero, A., Bandres, F., & Legido, J. (1995). Anaerobic threshold in children: determination from saliva analysis in field tests. European journal of applied physiology and occupational physiology, 70(6), 541-544.
Lopez-Chicharro, J., Legido, J. C., Alvarez, J., Serratosa, L., Bandres, F., & Gamella, C. (1994). Saliva electrolytes as a useful tool for anaerobic threshold determination. European journal of applied physiology and occupational physiology, 68(3), 214-218.
Mahler, P., & Rostan, A. (1990). L’effort perçu: corrélation avec le seuil anaérobie et utilité dans un programme d’entraînement. Schweizerische Zeitschrift für Sportmedizin, 38(4), 187-191.
Matsumoto, T., Ito, K., & Moritani, T. (1991). The relationship between anaerobic threshold and electromyographic fatigue threshold in college women. European journal of applied physiology and occupational physiology, 63(1), 1-5.
Morishita, S., Yamauchi, S., Fujisawa, C., & Domen, K. (2014). Rating of perceived exertion for quantification of the intensity of resistance exercise. International Journal of Physical Medicine & Rehabilitation, 1(172), 2.
Oliveira, L.d.S., Oliveira, S.F., Manchado-Gobatto, F.d.B., & Costa, M.d.C. (2015). Salivary and blood lactate kinetics in response to maximal workload on cycle ergometer. Revista Brasileira de Cineantropometria & Desempenho Humano, 17(5), 565-574.
Pinto, S.S., Brasil, R.M., Alberton, C.L., Ferreira, H.K., Bagatini, N.C., Calatayud, J., & Colado, J.C. (2016). Noninvasive Determination of Anaerobic Threshold Based on the Heart Rate Deflection Point in Water Cycling. The Journal of Strength & Conditioning Research, 30(2), 518-524.
Pokan, R., Hofmann, P., Preidler, K., Leitner, H., Dusleag, J., Eber, B., .Klein, W. (1993). Correlation between inflection of heart rate/work performance curve and myocardial function in exhausting cycle ergometer exercise. European journal of applied physiology and occupational physiology, 67(5), 385-388.
Segura, R., Javierre, C., Ventura, J., Lizarraga, M., Campos, B., & Garrido, E. (1996). A new approach to the assessment of anaerobic metabolism: measurement of lactate in saliva. British Journal of Sports Medicine, 30(4), 305-309.
Sentija, D., Vucetic, V., & Markovic, G. (2007). Validity of the modified Conconi running test. International journal of sports medicine, 28(12), 1006-1011.
Svedahl, K., & MacIntosh, B.R. (2003). Anaerobic threshold: the concept and methods of measurement. Canadian Journal of Applied Physiology, 28(2), 299-323.
Taylor, A., & Bronks, R. (1994). Electromyographic correlates of the transition from aerobic to anaerobic metabolism in treadmill running. European journal of applied physiology and occupational physiology, 69(6), 508-515.
Tékus, É., Kaj, M., Szabó, E., Szénási, N., Kerepesi, I., Figler, M., Wilhelm, M. (2012). Comparison of blood and saliva lactate level after maximum intensity exercise. Acta Biologica Hungarica, 63(Supplement 1), 89-98.
Tyka, A., Pałka, T., Tyka, A., Cisoń, T., & Szyguła, Z. (2009). The influence of ambient temperature on power at anaerobic threshold determined based on blood lactate concentration and myoelectric signals. International journal of occupational medicine and environmental health, 22(1), 1-6.
Vachon, J.A., Bassett, D.R., & Clarke, S. (1999). Validity of the heart rate deflection point as a predictor of lactate threshold during running. Journal of applied physiology, 87(1), 452-459.
Viitalaso, J. T., Luhtanen, P., Rahkila, P., & Rusko, H. (1985). Electromyographic activity related to aerobic and anaerobic threshold in ergometer bicycling. Acta physiologica scandinavica, 124(2), 287-293.
Vucetić, V., Sentija, D., Sporis, G., Trajković, N., & Milanović, Z. (2014). Comparison of ventilation threshold and heart rate deflection point in fast and standard treadmill test protocols. Acta clinica Croatica, 53(2), 190-203.
Wasserman, K., & McIlroy, M.B. (1964). Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. The American journal of cardiology, 14(6), 844-852.
Zamunér, A.R., Moreno, M.A., Camargo, T.M., Graetz, J.P., Rebelo, A.C., Tamburús, N.Y., & da Silva, E. (2011). Assessment of subjective perceived exertion at the anaerobic threshold with the Borg CR-10 scale. Journal of Sports Science and Medicine, 10(1), 130-136.