Metrika

  • citati u SCIndeksu: [2]
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:12
  • preuzimanja u poslednjih 30 dana:9

Sadržaj

članak: 7 od 12  
Back povratak na rezultate
2018, vol. 22, br. 1, str. 27-30
Bioaktivni sastav i antoksidantna aktivnost vina od različitih vrsti ribizle
Burapha University, Faculty of Science, Department of Food Science, Chonburi, Thailand

e-adresaniramolp@go.buu.ac.th, pniramol2@gmail.com
Ključne reči: Ribesspp.; Crna ribizla; crvena ribizla; bela ribizla; antocijan
Sažetak
Cilj ovog rada bio je istraživanje bioaktivnih jedinjenja i antioksidativna aktivnost vina od različitih vrsti ribizle. Plodovi ribizle, crna (Ribesnigrum Moravia CV.), crvena (R. rubrumLosan CV.) i bela (R. rubrum Primus CV.), prikupljeni su iz većnjaka u Modricu u Češkoj Republici u julu 2015. godine i zamrznuti na -18oC sve do početka eksperimenta. Crna ribizla je samlevena i celi plodovi direktno su korišćeni za proizvodnju vina, dok je od crvene i bele ribizle korišten samo sok. Izmeren je sadržaj ukupno rastvorljivih materija (TSS), titratibilna kiselost (TA) i pH sokova. TSS je podešen na 20°Brix, a TA soka je podešen na 7,5 g/L. Zatim je sok premešten u fermentacione posude. Nakon 12 dana fermentacije, utvrđeni su hemijski sastav (TSS, TA, pH, ukupni SO2, bioaktivna jedinjenja (ukupna fenolna jedinjenja (TPC) i ukupni monomermi antocijan (TMA)) i antioksidativna aktivnost (DPPH i FRAP analiza). Rezultati su pokazali da je crno vino imalo najviše ukupno rastvorljivih materija (15,80oBrix), a zatim belo vino (12,03°Brix) i crveno (8,40oBrix). Belo vino pokazalo je najvišu titratibilnu kiselost (9,32 g/mL). Značajna razlika u pH vrednostima između vina nije ustanovljena (P>0,05). Optimalne vrednosti TSS i TA kod belog vina doprinle su najvišem sadržaju alkohola u belom vinu (11,6%). Crno vino imalo je najvišu TPC, TMA i antioksidantnu aktivnost (DPPH i FRAI analize). Vino sa višim TPC pokazalo je veću antioksidativnu aktivnost, što ukazuje da je TPC odgovoran za antioksidantnu aktivnost vina.
Reference
Amerine, M.A., Ough, C.S. (1974) Wine and must analysis. New York: John Wiley and Sons
AOAC (2005) Official Methods of Analysis of AOAC International: Total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines. Journal of AOAC International, 88(5): 1269-1278
Atanasova, V., Fulcrand, H., Cheynier, V., Moutounet, M. (2002) Effect of oxygenation on polyphenol changes occurring in the course of wine-making. Analytica Chimica Acta, 458(1): 15-27
Bajić, B., Rončević, Z., Puškaš, V., Miljić, U., Dodić, S., Grahovac, J., Dodić, J. (2015) White wine production effluents used for biotechnological production of xanthan. Journal on Processing and Energy in Agriculture, vol. 19, br. 1, str. 52-55
Bakowska-Barczak, A.M., Kolodziejczyk, P.P. (2011) Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products, 34(2): 1301-1309
Benzie, I.F.F., Strain, J.J. (1996) The Ferric Reducing Ability of Plasma (FRAP) as a Measure of 'Antioxidant Power': The FRAP Assay. Analytical Biochemistry, 239(1): 70-76
Bimpilas, A., Tsimogiannis, D., Balta-Brouma, K., Lymperopoulou, T., Oreopoulou, V. (2015) Evolution of phenolic compounds and metal content of wine during alcoholic fermentation and storage. Food Chemistry, 178: 164-171
Contreras-Lopez, E., Castañeda-Ovando, A., González-Olivares, L.G., Añorve-Morga, J., Jaimez-Ordaz, J. (2014) Effect of Light on Stability of Anthocyanins in Ethanolic Extracts of <i>Rubus fruticosus</i>. Food and Nutrition Sciences, 05(06): 488-494
Durak, İ., Avci, A., Kagmaz, M., Buyukkoqak, S., Burak, S.M.Y., Elgun, S., Serdar, O.H. (1999) Comparison of Antioxidant Potentials of Red Wine, White Wine, Grape Juice and Alcohol. Current Medical Research and Opinion, 15(4): 316-320
Hager, T.J., Howard, L.R., Prior, R.L. (2008) Processing and Storage Effects on Monomeric Anthocyanins, Percent Polymeric Color, and Antioxidant Capacity of Processed Blackberry Products. Journal of Agricultural and Food Chemistry, 56(3): 689-695
Iland, P. (2000) Techniques for chemical analysis and quality monitoring during winemaking: Patrick Iland wine promotions
Konić-Ristić, A., Šavikin, K., Zdunić, G., Janković, T., Juranic, Z., Menković, N., Stanković, I. (2011) Biological activity and chemical composition of different berry juices. Food Chemistry, 125(4): 1412-1417
Lipińska, L., Klewicka, E., Sójka, M. (2014) The structure, occurrence and biological activity of ellagitannins: a general review. Acta Scientiarum Polonorum Technologia Alimentaria, 13(3): 289-299
Määttä, K., Kamal-Eldin, A., Törrönen, R. (2001) Phenolic Compounds in Berries of Black, Red, Green, and White Currants ( Ribes sp.). Antioxidants & Redox Signaling, 3(6): 981-993
Mattila, P.H., Hellström, J., Karhu, S., Pihlava, J., Veteläinen, M. (2016) High variability in flavonoid contents and composition between different North-European currant (Ribes spp.) varieties. Food Chemistry, 204: 14-20
Mendelová, A., Mendel, Ľ., Krajčovič, T., Czako, P., Mareček, J., Frančáková, H. (2016) Quality assessment of juice prepared from different varieties of currant (Ribes L.). Potravinarstvo, 10(1):
Mgaya-Kilima, B., Remberg, S.F., Chove, B.E., Wicklund, T. (2015) Physiochemical and antioxidant properties of roselle-mango juice blends; effects of packaging material, storage temperature and time. Food Science & Nutrition, 3(2): 100-109
Radovanović, V., Đekić, S., Radovanović, B. (2011) Economic potential of applying grape seed extract as a natural antioxidant. Journal on Processing and Energy in Agriculture, vol. 15, br. 4, str. 263-266
Rajakangas, J., Misikangas, M., Päivärinta, E., Mutanen, M. (2008) Chemoprevention by white currant is mediated by the reduction of nuclear β-catenin and NF-κB levels in Min mice adenomas. European Journal of Nutrition, 47(3): 115-122
Singleton, V.L., Rossi, J.A. (1965) Colorimetry of total phenolics with phosphomolibdic phosphotungstic acid reagent. American Journal of Enology Viticulture, 16(3): 144-158
Terefe, N.S. (2016) Emerging Trends and Opportunities in Food Fermentation. u: Reference Module in Food Science, Elsevier BV
Tian, Y., Liimatainen, J., Alanne, A., Lindstedt, A., Liu, P., Sinkkonen, J., Kallio, H., Yang, B. (2017) Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chemistry, 220: 266-281
Vuorinen, H., Määttä, K., Törrönen, R. (2000) Content of the Flavonols Myricetin, Quercetin, and Kaempferol in Finnish Berry Wines. Journal of Agricultural and Food Chemistry, 48(7): 2675-2680
Wang, L., Sun, X., Li, F., Yu, D., Liu, X., Huang, W., Zhan, J. (2015) Dynamic changes in phenolic compounds, colour and antioxidant activity of mulberry wine during alcoholic fermentation. Journal of Functional Foods, 18: 254-265
Wen, Y., Yan, L., Chen, C. (2013) Effects of fermentation treatment on antioxidant and antimicrobial activities of four common Chinese herbal medicinal residues by Aspergillus oryzae. Journal of Food and Drug Analysis, 21(2): 219-226
Xiao, Y., Wang, L., Rui, X., Li, W., Chen, X., Jiang, M., Dong, M. (2015) Enhancement of the antioxidant capacity of soy whey by fermentation with Lactobacillus plantarum B1-6. Journal of Functional Foods, 12: 33-44
Yang, B., Zheng, J., Laaksonen, O., Tahvonen, R., Kallio, H. (2013) Effects of Latitude and Weather Conditions on Phenolic Compounds in Currant (Ribes spp.) Cultivars. Journal of Agricultural and Food Chemistry, 61(14): 3517-3532
Zdunić, G., Šavikin, K., Pljevljakušić, D., Djordjević, B. (2016) Black ( Ribes nigrum L.) and Red Currant ( Ribes rubrum L.) Cultivars. u: Nutritional Composition of Fruit Cultivars, Elsevier BV, str. 101-126
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/JPEA1801027P
objavljen u SCIndeksu: 03.05.2018.

Povezani članci