Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:25
  • preuzimanja u poslednjih 30 dana:10
članak: 2 od 5  
Back povratak na rezultate
Ratarstvo i povrtarstvo
2019, vol. 56, br. 2, str. 41-48
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.5937/ratpov56-20428

Creative Commons License 4.0
Uticaj Pseudomonas chlororaphis subsp. aurantiaca soja Q16 koji inhibira rast Fusarium oxysporum na prinos krompira
aInstitut za zaštitu bilja i životnu sredinu, Beograd
bInstitut za zemljište, Beograd
cVojnomedicinska akademija
dUniverzitet u Novom Sadu, Poljoprivredni fakultet

e-adresa: dobrivoj.postic@izbis.bg.ac.rs

Projekat

Novi autohtoni izolati bakterija Lysobacter i Pseudomonas kao važan izvor metabolita korisnih za biotehnologiju, stimulaciju rasta biljaka i kontrolu bolesti bilja: od izolata do preparata (MPNTR - 46007)
Razrada integrisanog upravljanja i primene savremenih principa suzbijanja štetnih organizama u zaštiti bilja (MPNTR - 31018)

Sažetak

U ovom radu je ispitan potencijal sojeva Pseudomonas chlororaphis koji produkuju antibiotike da povećaju prinos krompira i da inhibiraju razvoj micelije fitopatogene gljive Fusarium oxysporum (Fo) izolovane sa krompira. P. chlororaphis subsp. aurantiaca soj Q16 (PchlQ16) izazvao je najveću inhibiciju rasta micelije (67,07%) gljive Fo izolata A2 in vitro. U poljskim ogledima utvrđivan je uticaj PchlQ16 na broj stabala po biljci, broj krtola i prosečnu masu krtole po biljci i ukupan prinos krompira sorte Rudolph. Primena PchlQ16 i broj tretmana imali su značajan uticaj na prinos krompira. PchlQ16 je povećao ukupan prinos krtola od 4,9% do 33,05% (dva tretmana), odnosno od 9,3% do 92,35% (četiri tretmana) u poredjenju sa kontrolom. Na osnovu ovih rezultata preporučujemo primenu PchlQ16 četiri puta tokom vegetacionog perioda krompira. Rezultati in vitro ogleda u kojima je ovaj soj izvršio supresiju razvoja F. oxysporum podržavaju ovu preporuku. U ovom istraživanju pokazano je da PchlQ16 deluje kao efektivan stimulator rasta biljaka u proizvodnji krompira i može biti efikasan u prevenciji infekcije gljivom F. oxysporum.

Ključne reči

Fusarium oxysporum; Pseudomonas chlororaphis; rizobacterija; Solanum tuberosum L.; uticaj inhibicije

Reference

Novododat članak: provera, normiranje i linkovanje referenci u toku.
Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian S. & Smith, D. L. (2018). Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Frontiers in plant science, 9, 1473 (1/17)
Bardas, G.A., Lagopodi, A.L., Kadoglidou, K. & Tzavella-Klonari, K. (2009). Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Biological Control, 49(2), 139-145
Biessy, A., Novinscak, A., Blom, J., Léger, G., Thomashow, L. S., Cazorla, F. M., Josic, D. & Filion, M. (2019). Diversity of phytobeneficial traits revealed by whole -genome analysis of worldwide -isolated phenazine -producing Pseudomonas spp. Environ Microbiol, 21, 437-455
Broćić, Z., Dolijanović, Z., Poštić, D., Milošević, D. & Savić, J. (2016). Yield, Tuber Quality and Weight Losses During Storage of Ten Potato Cultivars Grown at Three Sites in Serbia. Potato Research, 59(1), 21-34
Bunker, R.N. & Mathur K. (2001). Integration of biocontrol agents and fungicide for suppression of dry root rot of Capsicum frutescens. Journal of mycology and plant pathology, 31, 330-334
Bus, C.B. & Wustman, R. (2007). The Canon of Potato Science: 28. Seed Tubers. Potato Research, 50(3-4), 319-322
Costa, R., van Aarle, I.M., Mendes, R. & van Elsas, J.D. (2009). Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation & whole-operon mobility within Gram-negative bacteria. Environmental Microbiology, 11(1), 159-175
Daami-Remadi, N. & El Mahjoub, M. (2006). Présence en Tunisie d'isolats de Fusarium sambucinum résistants aux benzimidazoles. Biotechnology, Agronomy, Society and Environment, 10, 7-16
Eken, C., Demirci, E. & Sahin,F. (2000). Pathogenicity of the fungi determined on tubers from potato storages in Erzurum, Turkey. Journal of Turkish Phytopathology, 29, 61-69
Esfahani, M.N. (2005). Susceptibility assessment of potato cultivars to Fusarium dry rot species. Potato Research, 48, 215-226
FAOSTAT (2018) Online Database (available at http://faostat.fao.org/. accessed May 28, 2018)
Gashgari, R. & Gherbawy, Y. (2013). Pathogenicity of Some Fusarium Species Associated with Superficial Blemishes of Potato Tubers. Polish Journal of Microbiology, 62(1), 59-66
Gudmestad, N.C., Taylor, RJ. & Pasche, J.S. (2007). Management of soilborne disease on potato. Australiasian Plant Pathology, 36(2), 109-115
Jamali, F., Sharifi-Tehrani A, Okhovvat M, Zakeri Z. & Saberi-Riseh R. (2004). Biological control of chickpea Fusarium wilt by antagonistic bacteria under greenhouse condition. Communications in agricultural and applied biological sciences, 69(4), 649-51
Jošić, D., Protolipac, K., Starović, M., Stojanović, S., Pavlović, S., Miladinović, M. & Radović, S. (2012). Phenazines producing Pseudomonas isolates decrease Alternaria tenuissima growth, pathogenicity and disease incidence on cardoon. Archives of Biological Scences, 64 (4), 1495-1503
Jošić, D., Ćirić, A., Soković, M., Stanojković-Sebić, A., Pivić, R., Lepšanović, Z. & Glamočlija, J. (2015). Antifungal Activities of Indigenous Plant Growth Promoting Pseudomonas spp. from Alfalfa and Clover Rhizosphere. Frontiers in Life Sdence, 8(2), 131-138
Khorsani, G.A. & Safaie,_A. N. (2008). Biological control of Fusarium wilt of potato using antagonistic strains of bacteria. Iranian Journal of Plant Pathology, 44 (173), 1-21
Knowles, R., Knowles, L. & Kumar, G.N.M. (2003). Stem number & set relationships for Russet Burbank, Ranger & Umatilla Russet potatoes in the Columbia Basin. Potato Progress, 3(13), 1-4
Landa, B.B., Mavrodi, O.V., Raaijmakers, J.M., McSpadden Gardener, B.B., Thomashow, L.S. & Weller, D.M. (2002). Differential ability of genotypes of 2,4 -diacetylphloroglucinol - producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Applied and Environmental Microbiology, 68(7), 3226-3237
Manikamdan, R., Saravanakumar, D., Rajendran, L., Raguch&er, T. & Samiyappan, R (2010). Standardization of liquid formulation of Pseudomonas jluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biological Control, 54(2), 83-89
Meyer, S. L. F., Everts, K. L., McSpadden Gardener, B., Masler, E.P., Abdelnabby, H.M.E. & Skantar, A.M. (2016). Assessment of DAPG-producing Pseudomonas fluorescens for Management of Meloidogyne incognita and Fusarium oxysporumon Watermelon. Journal of Nematology, 48(1), 43-53
Momirović, N., Broić, Z., Stanisavljević, R., Štrbanović, R., Gvozden, G., Stanojković-Sebić A. & Poštić, D. (2016). Variability of Dutch potato varieties under various agroecological conditions in Serbia. Genetika, 48(1), 109-124
Ocamb, C.M., Hamm, P.B. & Johnson, D.A. (2007). Benzimidazole resistance of Fusarium species recovered from potatoes with dry rot from storages located in the Columbia basin of Oregon and Wachington. American Journal of Potato Research, 84, 169-177
Organisation for Economic Co-operation & Development (2009). "Report of Workshop on the Regulation of Biopesticides: Registration & Communication Issues". In: Seeris on Pesticides. http://www.oecd.org/chemicalsafety/pesticides-biocides/ biological pesticide registration.htm, No 44
Peters, R.D., MacLeod, C., Seifert, K.A., Martin, R.A., Hale, L.R. Grau, C.R. & MacInnis, S. (2008). Pathogenicity to potato tubers of Fusarium spp. isolated from potato cereal and forage crops. American Journal of Potato Research, 85, 367-374
Pivić, R., Starović, M., Delie, D., Rasulić, N., Kuzmanović, Đ., Poštić, D. & Jošić, D. (2015). Bacterial antagonists Bacillus sp. Q3 and Pseudomonas chlororaphis Q16 capable to control wheat powdery mildew in wheat. Romanian Biotechnological Letters, 20(3), 10448-10460
Poritsanos, N., Selin, C., Fern&o,W.G.D., Nakkeeran, S. & de Kievit T.R. (2006). A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a bio film. Canadian Journal of Microbiology, 52, 1177-1188
Poštić, D., Momirović, N., Dolijanović, Z., Broćić, Z., Jošić, D., Popović, T. & Starović, M., (2012). Effect of Potato Tubers Origin & Weight on the Yield of Potato Variety Desiree in Western Serbia. Field and Vegetable Crops Research, 49(3), 236-242
Poštić, D., Starović, M., Popović, T., Bosnie, P., Stanojković-Sebić, A., Pivić, R. & Jošić D. (2013). Selection and RAPD analysis of Pseudomonas spp. isolates able to improve biological viability of potato seed tubers. Genetika, 45(1), 237-249
Puopolo, G., Raio, A., Pierson, L.S. & Zoina, A. (2011). Selection of a new Pseudomonas chlororaphis strain for the biological control of Fusarium oxysporum f.sp. radicis lycopersià. Phytopathologia Mediterranea, 50, 228-235
Raio, A., Puopolo, G., Cimmino, A., Danti, R., Della, R.G. & Evidente, A. (2011). Biocontrol of cypress canker by the phenazine producer Pseudomonas chlororaphis subsp. aureofaciens strain M71. Biological Controntrol, 58(2), 133-138
Recep, K., Fikrettin, S., Erkol, D. & Cafer, E. (2009). Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biological Control, 50(2), 194-198
Saikia, R., Varghese, S., Singh, B.P. & Arora, D.K. (2009). Influence of mineral amendment on disease suppressive activity of Pseudomonas fluorescens to Fusarium wilt of chickpea. Microbiological Research, 16(4), 365-373
Secor, G.A. & Salas, B. (2001). Fusarium dry rot and fusarium wilt. In. Stevenson, W.R., Loria, F., Franc, G.D., Weingartner, D.P., editors. Compendium of potato diseases. St.Paul, mn, USA: APS Press
Selin, C., Habibian, R., Poritsanos, N., Athukorala, S.N., Fern&o, D. & de Kievit, T.R. (2010). Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation. FEMS Microbiology Ecology, 71(1), 73-83
Selvaraj, S., Ganeshamoorthi, P., And, T., Raguchander, T., Seenivasan, N. & Samiyappan, R. (2014). Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation. Biological Control, 59(3), 345-355
Sindhu, S.S. & Dadarwal, K.R. (2001). Chitionlytic and cellulytic Pseudomonas spp. antagonistic to fungal pathogens enhances nodulation by Mesorhigobium spp. cicer in chickpea. Microbiological Research, 156(4), 353-358
Susilomati, A., Wahyudi, AT., Lestari, Y., Suwanto, A. & Wiyono S. (2011). Potential Pseudomonas isolated from soyben rhizosphere as biocontrol against soil borne pytopathogenic fungi. Journal of Biosciences, 18, 51-56
Tadesse, M., Lommen, W.J.M. & Struik, P.C. (2001). Development of micropropagated potato plants over three phases of growth as affected by temperature in different phases. Netherland Journal of Agricultural Science, 49(1), 53-66
Venter, S.I., Theron, D.J., Steyn, P.J., Ferreira, D.I. & Eicker, A. (1992). A relationship between vegetative compatibility and pathogenicity of isolates of Fusarium oxysporum f.sp. tuberosi from potato. Phytopathology, 82, 858-862
Wolf, A., Fritze, A., Hagemann, M. & Berg, G. (2002). Stenotrophomonas rhigophila sp. nov., a novel plant-associated bacterium with antifungal properties. International Journal of Systematic and Evolutionary Microbiology, 52(6), 1937-1944