Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:2
članak: 1 od 20  
Back povratak na rezultate
Journal of Applied Engineering Science
2019, vol. 17, br. 2, str. 107-115
jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljeno: 04/09/2019
doi: 10.5937/jaes17-18748
Creative Commons License 4.0
Kinematics of mass phenomena on the example of an active landslide monitored using GPS and GBInSAR technology
(naslov ne postoji na srpskom)
AGH University of Science and Technology, Poland

e-adresa: szafarcz@agh.edu.pl

Sažetak

(ne postoji na srpskom)
The process of landslides is often carried out over long periods of time and is conditioned by the action of three groups of factors: an accidental, cyclical and main factor. The separation of the long-term tendency (isolation of the main factor) requires elimination of the seasonal (cyclic) and accidental factor. The article presents the results of geodesic surveys of a selected landslide, which was activated by opencast mining. Geodetic measurements were carried out with a ground based radar interferometer in GBInSAR technology and a GPS receiver in RTN technology. For the obtained data, a method was presented that allows to isolate a cyclic factor in a 24-hour period. The elimination of the cyclical factor allowed to distinguish the long-term tendency and determine the nature of the trend.

Ključne reči

open cast mine; landslide; displacement monitoring; geodetic measurements; technology; kinematics

Reference

Bozzano, F., Cipriani, I., Mazzanti, P., Prestininzi, A. (2011) Displacement patterns of a landslide affected by human activities: Insights from ground-based InSAR monitoring. Natural Hazards, 59(3), 1377-1396
Bydłosz, J., Hanus, P. (2013) The impact of landslide areas on municipal spatial planning. Real Estate Management and Valuation, vol. 21, no. 4, pp. 5-10
Cruden, D.M., Varnes, D.J. (1996) Landslide types and processes. u: Special Report 247: Landslides: Investigation and Mitigation, Transportation Research Board, Washington D.C: Transportation Research Board
Czarnecki, L., Jończyk, W., Organiściak, B., Wysokińskii, L. (2007) Zagrożenia geotechniczne w wyrobisku górniczym kopalni Bełchatów. Warszawa: ITB
Gili, J.A., Corominas, J., Rius, J. (2000) Using global positioning system techniques in landslide monitoring. Engineering Geology, 55(3), 167-192
Ilcewicz-Stefaniuk, D., Lemberger, M., Magiera, J., Rybicki, S., Słomka, T., Stefaniuk, M. (2004) Cataloguing natural geological hazards over Poland's territory. Polish Geological Institute Special Papers, 15, 53-60
Kroh, P., Strus, P., Gorczyca, E., Wronska-Walach, D., Dlugosz, M. (2014) Identyfi kacja osuwisk w gminie Łososina Dolna na podstawie danych lotniczego skanowania laserowego. Problemy Ekologii Krajobrazu, 38, 61-75
Lenda, G., Ligas, M., Lewińska, P., Szafarczyk, A. (2016) The use of surface interpolation methods for landslides monitoring. KSCE Journal of Civil Engineering, 20(1), 188-196
Luzi, G., Pieraccini, M., Mecatti, D., Noferini, L., Macaluso, G., Galgaro, A., Atzeni, C. (2006) Advances in ground-based microwave interferometry for landslide survey: A case study. International Journal of Remote Sensing, 27(12), 2331-2350
Maciaszek, J., Gawałkiewicz, R., Szafarczyk, A. (2015) Surveying methods of landslide studies. Wydawnictwa AGH, p. 123
Monserrat, O., Crosetto, M., Luzi, G. (2014) A review of ground-based SAR interferometry for deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 40-48
Noferini, L., Pieraccini, M., Mecatti, D., Macaluso, G., Atzeni, C., Mantovani, M., Marcato, G., Pasuto, A., Silvano, S., Tagliavini, F. (2007) Using GB-SAR technique to monitor slow moving landslide. Engineering Geology, 95(3-4), 88-98
Pavlov, A.P. (1968) Landslide general classifi cations. u: Engineering geology reference book, Moscow: Nedra' Publishers, 181-181
Pilecki, Z. (2017) Basic principles for the identification of landslides using geophysical methods. E3S Web of Conferences, 24, 01001-01001
Puniach, E., Bieda, A., Ćwiąkała, P., Kwartnik-Pruc, A., Parzych, P. (2018) Use of unmanned aerial vehicles (UAVs) for updating farmland cadastral data in areas subject to landslides. ISPRS International Journal of Geo-Information, vol. 7 iss. 8 art. no. 331, pp. 1-19
Rybicki, S., Czarnecki, L., Organiściak, B. (2000) Zagrożenia geotechniczne w KWB 'Bełchatów', ich uwarunkowania, możliwości prognozy oraz zapobiegania. u: Materiały Sympozjum '25 lat doświadczeń KWB Bełchatów'. Bełchatów 17-18 stycznia 2000, SITG KWB 'Bełchatów, 19-26
Savarensky, F.P. (1981) Landslides, landslides classifi cation. u: Engineering geology reference book, Moscow: Nedra' Publishers, 87-88
Sharpe, C.F. (1938) Landslides and related phenomena. New York: Columbia University Press, 1370-1370
Szafarczyk, A., Gawałkiewicz, R. (2016) Case study of the tensor analysis of ground deformations evaluated from geodetic measurements in landslide area. Acta Geodynamica et Geomaterialia, 201-211
Szafarczyk, A., Rybicki, S., et al. (2013) Study of the kinematics of surface mass movements using ground-based radar interferometry. Wydawnictwa AGH, 126-126
Tarchi, D., Casagli, N., Fanti, R., Leva, D.D., Luzi, G., Pasuto, A., Pieraccini, M., Silvano, S. (2003) Landslide monitoring by using ground-based SAR interferometry: An example of application to the Tessina landslide in Italy. Engineering Geology, 68(1-2), 15-30
Terzaghi, K. (1950) Mechanism of landslides, engineering geology. Barkey, reprintFrom Theory to practice In soil mechanics. N. York, J. 1950
Varnes, D.J. (1978) Slope movement types and processes. u: Special report 176: Landslides: Analysis and Control, Washington, D.C: Transportation Research Board
Wojciechowski, T., Perski, Z. (2008) Zastosowanie satelitarnej interferometrii radarowej do określenia aktywności osuwisk obrzeżenia Kotliny Sądeckiej. Archiwum Fotogrametrii, Kartografi i i Teledetekcji, 18, 697-706
Wysokiński, L. (1980) Kryterium dynamiki zboczy. Biuletyn Instytutu Geologicznego, Nr 324