Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:3
članak: 5 od 23  
Back povratak na rezultate
Journal of Applied Engineering Science
2019, vol. 17, br. 3, str. 284-294
jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljeno: 10/10/2019
doi: 10.5937/jaes17-21031
Creative Commons License 4.0
Structural adaptive anisotropic NAS-RIF for biomedical image restoration
(naslov ne postoji na srpskom)
Suranaree University of Technology, Thailand



(ne postoji na srpskom)
Blind image deconvolution is an ill-posed problem that attempts to restore an acquired image degraded by unknown PSF. A variational BID implementation, called NAS-RIF, is known for being robust but prone to poor convergence under low SNR and unrealistic support. Motivated by simple yet efficient fidelity metric, this paper presents an improved NAS-RIF by reducing adverse effect of inverse high-pass filter and computationally intensive pre-deterministic noise removal, by adaptively incorporating anisotropic structural property within local neighborhood seamlessly in NAS-RIF cost function. With an automatic support region estimation, the entire deconvolution process was fully automatic. The experimental results reported herein indicated that the enhanced structural adaptive anisotropic NAS-RIF had better convergence condition, while maintaining the underlying image fidelity.

Ključne reči

Blind Deconvolution; NAS-RIF; Structural Adaptive Filter


Ayers, G.R., Dainty, J.C. (1988) Iterative blind deconvolution method and its applications. Optics Letters, 13(7): 547-547
Bishop, T.E., Babacan, S.D., Amizic, B., Katsaggelos, A.K., Chan, T., Molina, R. (2007) Blind image deconvolution: Problem formulation and existing approaches. CRC Press, 49 pages
Chan, T.F., Yip, A.M., Park, F.E. (2005) Simultaneous total variation image inpainting and blind deconvolution. International Journal of Imaging Systems and Technology, 15(1): 92-102
Chen, T.J., Chuang, K.S., Chang, J.H., Shiao, Y.H., Chuang, C.S. (2006) A Blurring Index for Medical Images. Journal of Digital Imaging, 19(2): 118-125
Chow, T.W.S., Li, X.D., Cho, S.Y. (2000) Improved blind image restoration scheme using recurrent filtering. IEE Proceedings - Vision, Image, and Signal Processing, 147(1): 23-23
García-Nieto, J., Alba, E., Jourdan, L., Talbi, E. (2009) Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis. Information Processing Letters, 109(16): 887-896
Hanocka, R., Kiryati, N. (2015) Progressive blind deconvolution. u: LCNS Computer Analysis of Images and Patterns, 9257: 313-325
Ipatov, Y., Krevetsky, A., Andrianov, Y., Sokolov, B. (2017) Creation of image models for evolving objects on dynamically changing scenes. Journal of Applied Engineering Science, vol. 15, br. 4, str. 540-545
Ipatov, Y., Krevetsky, A., Andrianov, Y., Sokolov, B. (2017) Robust classification of texture land forest inventory based on model of minimally sufficient features. Journal of Applied Engineering Science, vol. 15, br. 3, str. 236-241
Jannetta, A., Jackson, J.C., Kotre, C.J., Birch, I.P., Robson, K.J., Padgett, R. (2004) Mammographic image restoration using maximum entropy deconvolution. Physics in Medicine and Biology, 49(21): 4997-5010
Khaminkure, A., Horkaew, P., Panyavaraporn, J. (2017) Building a brain atlas based on gabor texture features. u: 2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE), 1-5
Kundur, D., Hatzinakos, D. (1995) A novel recursive filtering method for blind image restoration. u: IASTED International Conference on Signal and Image Processing (SIP), Proc, 428-431
Kundur, D., Hatzinakos, D. (1996) On the global asymptotic stability of the NAS-RIF algorithm for blind image restoration. u: 3rd IEEE International Conference on Image Processing, Proceedings of, 73-76
Kundur, D., Hatzinakos, D. (1998) A novel blind deconvolution scheme for image restoration using recursive filtering. IEEE Transactions on Signal Processing, 46(2): 375-390
Kundur, D., Hatzinakos, D., Leung, H. (2000) Robust classification of blurred imagery. IEEE Transactions on Image Processing, 9(2): 243-255
Kundur, D., Hatzinakos, D. (1996) Blind image deconvolution. IEEE Signal Processing Magazine, 13(3): 43-64
Matsuyama, M., Tanji, Y., Tanaka, M. (2000) Enhancing the ability of NAS-RIF algorithm for blind image deconvolution. u: 2000 IEEE International Symposium on Circuits and Systems: Emerging Technologies for the 21st Century, Proceedings (IEEE Cat No.00CH36353), 553-556
Molina, R., Mateos, J., Katsaggelos, A.K. (2006) Blind Deconvolution Using a Variational Approach to Parameter, Image, and Blur Estimation. IEEE Transactions on Image Processing, 15(12): 3715-3727
Ong, C.A., Chambers, J.A. (1999) An enhanced NAS-RIF algorithm for blind image deconvolution. IEEE Transactions on Image Processing, 8(7): 988-992
Otsu, N. (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66
Panyavaraporn, J., Horkaew, P. (2018) Classification of Alzheimer's Disease in PET Scans using MFCC and SVM. International Journal on Advanced Science, Engineering and Information Technology, 8(5): 1829-1829
Ruiz, P., Zhou, X., Mateos, J., Molina, R., Katsaggelos, A.K. (2015) Variational Bayesian Blind Image Deconvolution: A review. Digital Signal Processing, 47: 116-127
Sezgin, M., Sankur, B. (2004) Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1): 146
Shi, S. (2013) Emgu CV essentials. Packt Publishing, 118 pages
Siddhichai, S., Chambers, J.A. (2000) Wavelet transform-based noise reduction schemes to improve the noise sensitivity of the NAS-RIF algorithm for blind image deconvolution. u: Signal Processing Conference, Proc, 4 pages
Turner, J.N., Lasek, S., Szarowski, D.H. (2001) Confocal Optical Microscopy. u: Encyclopedia of Materials: Science and Technology, Elsevier, (Second Edition), pp. 1504-1509
van Overveld, I.M.C.J. (1995) Contrast, noise, and blur affect performance and appreciation of digital radiographs. Journal of Digital Imaging, 8(4): 168-179
Wang, H., Qi, S., Liu, Y. (2009) An Improved NAS-RIF Algorithm Based on the Lifting Scheme for Blind Image Restoration. u: 2009 Pacific-Asia Conference on Circuits, Communications and Systems, IEEE, 423-426
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P. (2004) Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4): 600-612
Wu, J., Feng, Z., Ren, Z. (2014) Improved structure-adaptive anisotropic filter based on a nonlinear structure tensor. Cybernetics and Information Technologies, 14(1): 112-127
Yang, G.Z., Burger, P., Firmin, D.N., Underwood, S.R. (1996) Structure adaptive anisotropic image filtering. Image and Vision Computing, 14(2): 135-145
Yang, Y., Yang, Z., Shen, T., Chen, B. (2012) ENAS-RIF algorithm for image restoration. u: SPIE, Photonics Asia, 1: 85581-85581
Zhang, J., Zhang, Q., He, G. (2009) Blind deconvolution of a noisy degraded image. Applied Optics, 48(12): 2350-2350
Zhulina, Y.V. (2006) Multiframe blind deconvolution of heavily blurred astronomical images. Applied Optics, 45(28): 7342-7342