Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:4
članak: 2 od 7  
Back povratak na rezultate
Vojnotehnički glasnik
2019, vol. 67, br. 4, str. 735-752
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.5937/vojtehg67-21519

Creative Commons License 4.0
Optimizacija adsorpcije arsenita na adsorbent na bazi hidroksiapatita korišćenjem adaptivnog neuro-fazi sistema
aUniversity of Defense in Belgrade, Military Academy, Department for Military Chemical Engineering
bUniversity of Defense in Belgrade, Military Academy, Department for Logistics

e-adresa: angrist2@gmail.com, dragan.pamucar@va.mod.gov.rs, jovica.bogdanov@va.mod.gov.rs, mbucko@gmail.com, zlatevel@yahoo.com

Projekat

Usmerena sinteza, struktura i svojstva multifunkcionalnih materijala (MPNTR - 172057)
Project from the University of Defense, Republic of Serbia (VA-TT/2-17-19 and VA-TT/1-18-20)

Sažetak

U radu se opisuje postupak optimizacije adsorpcije arsenitnih jona iz otpadnih voda korišćenjem adaptivnog neuro-fazi sistema (ANFIS). U osnovi adsorbenta nalazi se prirodni hidroksi-apatitni materijal dobijen iz krljušti šarana (Cyprinus carpio). Kao ulazni parametri korišćeni su uticaj pH, temperature, početne koncentracije i vremena adsorpcije arsenita, a kao izlazni parametri ispitivani su adsorpcioni kapacitet i procenat uklanjanja arsenita.

Ključne reči

arsenit; adsorpcija; krljušt šarana; hidroksiapatit; adsorbent; ANFIS

Reference

Abraham, A. (2005) Adaptation of fuzzy Inference system using neural learning. u: Nedjah N., de Macedo Mourelle L. [ur.] Fuzzy Systems Engineering: Theory and Practice, Studies in Fuzziness and Soft Computing 181, Germany: Springer Verlag, 53-83
Bajić, Z.J., Djokić, V.R., Veličković, Z.S., Vuruna, M.M., Ristić, M.D., Issa, B.N., Marinković, A.D. (2013) Equilibrium, Kinetic and Thermodynamic Studies on Removal of Cd(II), Pb(II) and As(V) from Wastewater Using Carp (Cyprinus Carpio) Scales. Digest Journal of Nanomaterials and Biostructures, 8(4), pp.1581-1590, http://www.chalcogen.ro/1581_Bajic.pdf [Accessed: 21 April 2019]
Bajić, Z.J., Veličković, Z.S., Djokić, V.R., Perić-Grujić, A.A., Ovidiu, E., Uskoković, P.S., Marinković, A.D. (2016) Adsorption study of arsenic removal by novel hybrid copper impregnated tufa adsorbents in a batch system. Clean Air Water Soil, 44(11), 1477-1488
Catros, S., Guillemot, F., Lebraud, E., Chanseau, C., Perez, S., Bareille, R., Fricain, J.C. (2010) Physico-chemical and biological properties of a nanohydroxyapatite powder synthesized at room temperature. IRBM, 31(4), pp.226-233
Chakraborty, R., Roychowdhury, D. (2013) Fish bone derived natural hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch oleic acid esterification. Chemical engineering journal, 215-2016, pp.491-499
Corami, A., Mignardi, S., Ferrini, V. (2008) Cadmium removal from single-and multimetal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite. J. Colloid Interface Sci, 317(2), pp.402-408
Del, R.G.J.A., Morando, P.J., Cicerone, D.S. (2004) Natural materials for treatment of industrial effluents: Comparative study of the retention of Cd, Zn and Co by calcite and hydroxyapatite, part I: Batch experiments. J. Environ. Manage, 71(2), 169-177
Dimović, S., Smičiklas, I., Plećaš, I., Antonović, D., Mitrić, M. (2009) Comparative study of differently treated animal bones for Co2+ removal. J. Hazard. Mater, 164(1), 279-287
Dreiseitl, S., Ohno-Machado, L. (2002) Logistic regression and artificial neural network classification models: A methodology review. Journal of biomedical informatics, 35(5-6), pp.352-359
Dziubek, J. (2017) Arsenic removal from industrial wastewater. u: 9th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2017, 17
Ferraz, M.P., Monteiro, F.J., Manuel, C.M. (2004) Hydroxyapatite nanoparticles: A review of preparation methodologies. Journal of Applied Biomaterials and Biomechanics, 2(2), pp.74-80
Huang, Y.C., Hsiao, P.C., Chai, H.J. (2011) Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceramics International, 37(6), pp.1825-1831
Islam, M., Mishra, P.C., Patel, R. (2011) Arsenate removal from aqueous solution by cellulose-carbonated hydroxyapatite nanocomposites. J. Hazard. Mater, 189(3), pp.755-763
Iyengar, G.V., Tandon, L. (1999) Minor and trace elements in human bones and teeth. Vienna: International Atomic Energy Agency, https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/029/31029996.pdf ?r=1&r=1 [Accessed: 21 April 2019]
Jadalannagari, S., More, S., Kowshik, M., Ramanan, S.R. (2011) Low temperature synthesis of hydroxyapatite nano-rods by a modified sol-gel technique. Materials Science and Engineering: C, 31(7), pp.1534-1538
Jang, J.S.R. (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3): 665-685
Jang, J.S.R. (1991) Fuzzy modeling using generalized neural networks and Kalman filter algorithm. u: 9th National Conference on Artificial Intelligence, Anaheim, CA, USA, July 14-19, Proceedings, pp.762-767
Jang, J.S.R., Sun, C.T., Mizutani, E. (1997) Neuro-fuzzy and soft computing. NJ, USA: Prentice Hall
Järup, L. (2003) Hazards of heavy metal contamination. British Medical Bulletin, 68(1), pp.167-182
Jovanović, B., Ljubisavljević, D., Rajaković, L. (2011) Uklanjanje arsena iz vode adsorpcijom na nekonvencionalnim materijalima. Vodoprivreda, vol. 43, br. 4-6, str. 127-150
Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., Chanthai, S. Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution. Chemical engineering journal, 215-216, pp.522-532
Lü, X.Y., Fan, Y.B., Gu, D., Cui, W. (2007) Preparation and characterization of natural hydroxyapatite from animal hard tissues. Key Engineering Materials, 342-343, pp.213-216
Luna-Zaragoza, D., Romero-Guzmán, E.T., Reyes-Gutiérrez, L.R. Surface and physicochemical characterization of phosphates vivianite, Fe2(PO4)3 and hydroxyapatite, Ca5(PO4)3OH. Journal of Minerals and Materials Characterization and Engineering, 8(8), pp.591-609
Ma, Q.Y., Logan, T.J., Traina, S.J., Ryan, J.A. (1994) Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environ. Sci. Technol, 28(7), 1219-1228
Ma, Q.Y., Logan, T.J., Traina, S.J. (1994) Effects of NO3-, CI-, F-, SO42-, and CO32-on Pb2+ immobilization by hydroxyapatite. Environ. Sci. Technol, 28(3), pp.408-418
Mehran, K. (2008) Takagi-Sugeno fuzzy modeling for process control. u: Industrial Automation, Robotics and Artificial Intelligence (EEE8005), Newcastle University-School of Electrical, Electronic and Computer Engineering
Nayak, A.K. (2010) Hydroxyapatite synthesis methodologies: An overview. International Journal of ChemTech Research, 2(2), pp.903-907,http://sphinxsai.com/s_v2_n2/CT_V.2No.2/ChemTech_Vol_2No.2_pdf/CT=24%20(903-907).pdf [Accessed: 21 April 2019]
Pamučar, D., Ćirović, G. (2018) Vehicle route selection with an adaptive neuro fuzzy inference system in uncertainty conditions. Decision Making: Applications in Management and Engineering, 1(1), pp.13-37. https://www.dmame.org/index.php/dmame/article/view/1/1 [Accessed: 21 April 2019]
Pamučar, D., Vasin, L., Lukovac, V. (2014) Selection of railway level crossings for investing in security equipment using hybrid DEMATEL-MARICA model. u: XVI International Scientific-expert Conference on Railway RAILCON 2014, Niš, Serbia, October 09-10, pp.89-92
Panda, N.N., Pramanik, K., Sukla, L.B. (2014) Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold. Bioprocess and biosystems engineering, 37(3), pp.433-440
Ramli, R.A., Adnan, R., Bakar, M.A., Masudi, S.A.M. (2011) Synthesis and characterisation of pure nanoporous hydroxyapatite. J. Phys. Sci, 22(1), pp.20-37, https://pdfs.semanticscholar.org/09bb/06858eb697b1df4a43f62351b67edb5b3 246.pdf [Accessed: 21 April 2019]
Scalera, F., Gervaso, F., Sanosh, K.P., Sannino, A., Licciulli, A. (2012) Influence of the calcination temperature on morphological and mechanical properties of highly porous hydroxyapatite scaffolds. Ceramics International, 39(5), pp.4839-4846
Sobczak-Kupiec, A., Wzorek, Z. (2012) The influence of calcination parameters on free calcium oxide content in natural hydroxyapatite. Ceramics International, 38(1), pp.641-647
Sremac, S., Tanackov, I., Kopić, M., Radović, D. (2018) ANFIS model for determining the economic order quantity. Decision Making: Applications in Management and Engineering, 1(2), pp.81-92. https://www.dmame.org/index.php/dmame/article/view/13/15 [Accessed: 21 April 2019]
Stötzel, C., Müller, F.A., Reinert, F., Niederdraenk, F., Barralet, J.E., Gbureck, U. (2009) Ion adsorption behaviour of hydroxyapatite with different crystallinities. Colloid Surf. B: Biointerfaces, 74(1), 91-95
Sukaimi, J., Hamzah, S., Ghazali, M., Sabri, M. (1985) Green synthesis and characterization of hydroxyapatite from fish scale biowaste. Applied Mechanics and Materials, 695, pp.235-238
Tahmasebi, P. (2012) A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Computers and Geosciences, 42, pp.18-27
Takagi, T., Sugeno, M. (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems Man and Cybernetics, 15(1), 116-132
Thomson, B.M., Smith, C.L., Busch, R.D., Siegel, M.D., Baldwin, C. (2003) Removal of metals and radionuclides using apatite and other natural sorbents. J. Environ. Eng, 129(6), 492-499
Veličković, Z., Ivanković, N., Striković, V., Karkalić, R., Jovanović, D., Bajić, Z., Bogdanov, J. (2016) Investigation of soil properties influence on the heavy metals sorption by plants and possibilities for prediction of their bioaccumulation by response surface methodology. J. Serb. Chem. Soc, 81(8), pp.1-14, https://www.shd-pub.org.rs/index.php/JSCS/article/view/1823/310 [Accessed: 21 April 2019]
Xu, Y., Schwartz, F.W., Traina, S.J. (1994) Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ. Sci. Technol, 28, 1472-1480