Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:4
članak: 2 od 5  
Back povratak na rezultate
Medicinski časopis
2019, vol. 53, br. 2, str. 49-54
jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljeno: 09/02/2020
doi: 10.5937/mckg53-19737
Odnos inflamatornih endotelijalnih markera sa težinom astme kod dece
Nacionalni medicinski univerzitet Harkov, Harkov, Ukrajina

e-adresa: dddimad@gmail.com

Projekat

Kharkiv National Medical University (No 0111U001173)

Sažetak

Cilj. Monocitni hemoatraktantni protein-1 (MCP) -1 i rastvorljivi molekularni adhezivni vaskularni ćelijski molekul-1 (sVCAM-1) ključni su regulatori mesta zapaljenja koje infiltriraju monociti. Cilj studije bio je da istraži ulogu ovih molekula kod dece sa astmom. Metode. Određene su koncentracije MCP-1 i sVCAM-1 tokom terapije održavanja astme kod dece s različitim stepenom težine astme, kao i međusobna povezanost MCP-1, sVCAM-1 i parametara funkcije disanja. Rezultati. Koncentracije MCP-1 i sVCAM-1 u svim grupama pregledanih pacijenata u periodu pogoršanja bolesti bile su znatno više nego kod dece iz kontrolne grupe. Tokom terapije održavanja koncentracije MCP-1 i sVCAM-1 smanjile su se kod pacijenata svih grupa bez obzira na težinu astme. Negativne korelacije između MCP-1 i FEV1, PEF, VC, FVC, FEV1/FVC ustanovljene su pre i posle terapije. Zaključak. Povećane koncentracije pomenutih biomarkera održavaju se do sedmog dana terapije. Ovo ukazuje na to da postoji veza između ovih hemokina i stvaranja i održavanja zapaljenjskog procesa. Otkrivena negativna korelacija između MCP-1 i glavnih parametara plućne funkcije sugeriše učešće hemoatraktanata MCP-1 u hroničnom zapaljenju disajnih puteva.

Ključne reči

astma; zapaljenje; biomarkeri; monocitni hemoatrakantni proteini; ćelijski adhezioni molekuli

Reference

Bi, J., Hu, Y., Peng, Z., Liu, H., Fu, Y. (2018) Changes and correlations of serum interleukins, adhesion molecules and soluble E-selectin in children with allergic rhinitis and asthma. Pakistan Journal of Medical Sciences, 34(5): 1288-92
Bush, A. (2019) Cytokines and chemokines as biomarkers of future asthma. Front Pediatr, 7: 72
Castro-Rodriguez, J.A., Saglani, S., Rodriguez-Martinez, C.E., Oyarzun, M.A., Fleming, L., Bush, A. (2018) The relationship between inflammation and remodeling in childhood asthma: A systematic review. Pediatr Pulmonol, 53: 824-859
di Stefano, A., Coccini, T., Roda, E., Signorini, C., Balbi, B., Brunetti, G., Ceriana, P. (2018) Blood MCP-1 levels are increased in chronic obstructive pulmonary disease patients with prevalent emphysema. Int J Chron Obstruct Pulmon Dis, 13: 1691-700
Elliot, J.G., Jones, R.L., Abramson, M.J., Green, F.H., Mauad, T., McKay, K.O., Bai, T.R., James, A.L. (2015) Distribution of airway smooth muscle remodelling in asthma: Relation to airway inflammation. Respirology, 20(1): 66-72
Foster, P.S., Maltby, S., Rosenberg, H.F., Tay, H.L., Hogan, S.P., Collison, A.M., Yang, M., Kaiko, G.E., Hansbro, P.M., Kumar, R.K., Mattes, J. (2017) Modeling TH2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunological Reviews, 278(1): 20-40
Grigoras, A., Grigoras, C.C., Giusca, S.E., Caruntu, I.D., Amalinei, C. (2016) Remodeling of basement membrane in patients with asthma. Rom J Morphol Embryol, 57: 115-119
Gruffydd-Jones, K. (2019) Unmet needs in asthma. Ther Clin Risk Manag, 15: 409-421
Hakansson, L., Heinrich, C., Rak, S., Venge, P. (1997) Priming of eosinophil adhesion in patients with birch pollen allergy during pollen season: Effect of immunotherapy. Journal of Allergy and Clinical Immunology, 99(4): 551-562
Incorvaia, C., Masieri, S., Cavaliere, C., Makri, E., Sposato, B., Frati, F. (2018) Asthma associated to rhinitis. J Biol Regul Homeost Agents, 32: 67-71
Keyhanmanesh, R., Rahbarghazi, R., Ahmadi, M. (2018) Systemic Transplantation of Mesenchymal Stem Cells Modulates Endothelial Cell Adhesion Molecules Induced by Ovalbumin in Rat Model of Asthma. Inflammation, 41(6): 2236-2245
King, G.G., James, A., Harkness, L., Wark, P.A.B. (2018) Pathophysiology of severe asthma: We've only just started. Respirology, 23(3): 262-271
Lee, Y.G., Jeong, J.J., Nyenhuis, S., Berdyshev, E., Chung, S., Ranjan, R., Karpurapu, M., Deng, J., Qian, F., Kelly, E.A.B., Jarjour, N.N., Ackerman, S.J., Natarajan, V., Christman, J.W. (2015) Recruited Alveolar Macrophages, in Response to Airway Epithelial-Derived Monocyte Chemoattractant Protein 1/CCL2, Regulate Airway Inflammation and Remodeling in Allergic Asthma. American Journal of Respiratory Cell and Molecular Biology, 52(6): 772-784
Marandi, Y., Farahi, N., Hashjin, G.S. (2013) Asthma: beyond corticosteroid treatment. Arch Med Sci, 9: 521-6
Mishra, A., Guo, Y., Zhang, L., More, S., Weng, T., Chintagari, N.R., Huang, C., Liang, Y., Pushparaj, S., Gou, D., Breshears, M., Liu, L. (2016) A Critical Role for P2X7 Receptor-Induced VCAM-1 Shedding and Neutrophil Infiltration during Acute Lung Injury. Journal of Immunology, 197(7): 2828-2837
Paone, G., Leone, V., Conti, V. (2016) Blood and sputum biomarkers in COPD and asthma: a review. Eur Rev Med Pharmacol Sci, 20: 698-708
Pope, C.3rd, Bhatnagar, A., McCracken, J.P., Abplanalp, W., Conklin, D.J., O'Toole, T. (2016) Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ Res, 119: 1204-1214
Rahbarghazi, R., Keyhanmanesh, R., Aslani, M.R., Hassanpour, M., Ahmadi, M. (2019) Bone marrow mesenchymal stem cells and condition media diminish inflammatory adhesion molecules of pulmonary endothelial cells in an ovalbumin-induced asthmatic rat model. Microvascular Research, 121: 63-70
Ramamoorthy, S., Cidlowski, J.A. (2016) Corticosteroidsmechanisms of action in health and disease. Rheum Dis Clin North Am, 42: 15-31
Roy, R.M., Wüthrich, M., Klein, B.S. (2012) Chitin Elicits CCL2 from Airway Epithelial Cells and Induces CCR2-Dependent Innate Allergic Inflammation in the Lung. Journal of Immunology, 189(5): 2545-2552
Shoda, T., Futamura, K., Orihara, K., Emi-Sugie, M., Saito, H., Matsumoto, K., Matsuda, A. (2016) Recent advances in understanding the roles of vascular endothelial cells in allergic inflammation. Allergology International, 65(1): 21-29
Singh, S.R., Sutcliffe, A., Kaur, D., Gupta, S., Desai, D., Saunders, R., Brightling, C.E. (2014) CCL2 release by airway smooth muscle is increased in asthma and promotes fibrocyte migration. Allergy, 69(9): 1189-1197
Soveg, F., Abdala-Valencia, H., Campbell, J., Morales-Nebreda, L., Mutlu, G.M., Cook-Mills, J.M. (2015) Regulation of allergic lung inflammation by endothelial cell transglutaminase 2. American Journal of Physiology-Lung Cellular and Molecular Physiology, 309(6): L573-L583
Umland, S.P., Nahrebne, K.D., Razac, S., Beavis, A., Pennline, K.J., Egan, R.W., Motasim, B.M. (1997) The inhibitory effects of topically active glucocorticoids on IL-4, IL-5, and interferon-γ production by cultured primary CD4+ T cells. Journal of Allergy and Clinical Immunology, 100(4): 511-519
Velikova, T.V., Krasimirova, E., Lazova, S.M., Perenovska, P., Valerieva, A., Miteva, D., Dimitrov, V., Staevska, M., Kyurkchiev, D., Petrova, G. (2018) MCP-1/CCL2 in a Bulgarian Cohort of Children with Bronchial Asthma and Cystic Fibrosis. Archives of Immunology and Allergy, 1: 1-5
Vogelberg, C. (2019) Preschool children with persistent asthmatic symptoms. Therapeutics and Clinical Risk Management, Volume 15: 451-460
Yao, Y., Tsirka, S.E. (2014) Mouse monocyte chemoattractant protein 1 (MCP1) functions as a monomer. International Journal of Biochemistry & Cell Biology, 55: 51-59
Yeryomenko, G. (2018) The role of fractalkine and monocyte chemoattractant protein-1 in the progression of asthma. Georgian Med News, 274: 125-130
Zonneveld, R., Martinelli, R., Shapiro, N.I., Kuijpers, T.W., Plötz, F.B., Carman, C.V. (2014) Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Critical Care, 18(1): 204