Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:12
  • preuzimanja u poslednjih 30 dana:4
članak: 1 od 9  
Back povratak na rezultate
Vojnotehnički glasnik
2020, vol. 68, br. 2, str. 207-215
jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljeno: 20/05/2020
doi: 10.5937/vojtehg68-25742
Creative Commons License 4.0
Dve Laplasove energije i odnosi među njima
Univerzitet u Kragujevcu, Prirodno-matematički fakultet

e-adresa: gutman@kg.ac.rs

Sažetak

Uvod/cilj: Laplasova energija (LE) jeste suma apsolutnih vrednosti pojmova mi -2m/n, gde su mi , i=1,2,...,n, sopstvene vrednosti Laplasove matrice grafa G sa n vrhova i m ivica. Godine 2006. uvedena je druga veličina Z, zasnovana na Laplasovim svojstvenim vrednostima, koja je takođe nazvana "Laplasova energija". Z je suma kvadrata Laplasovih svojstvenih vrednosti. Cilj ovog rada je nalaženje odnosa između LE i Z. Rezultati: Donja i gornja granica za LE određene su kao funkcije od Z. Zaključak: Rad doprinosi Laplasovoj spektralnoj teoriji i teoriji energije grafova. Pokazano je da je, kao gruba aproksimacija, LE proporcionalna sa (Z-4m2 /n)1/2.

Ključne reči

Reference

Andriantiana, E.O.D. (2016) Laplacian energy. u: Gutman I., Li X. [ur.] Graph Energies: Theory and Applications, University of Kragujevac, pp. 49-80
Bai, Y., Dong, L., Huang, X., Yang, W., Liao, M. (2014) Hierarchial segmentation of polarimetric SAR image via non-parametric graph entropy. u: IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, July 13-18
Das, K.C., Mojallal, S.A. (2014) On Laplacian energy of graphs. Discrete Mathematics, 325, pp.52-64
Deepa, G., Praba, B., Chandrasekaran, V.M. (2016) Spreading rate of virus on energy of Laplacian intuitionistic fuzzy graph. Research Journal of Pharmacy and Technology, 9(8), pp.1140-1144
Grone, R., Merris, R., Sunder, V.S. (1990) The Laplacian spectrum of a graph. SIAM Journal on Matrix Analysis and Applications, 11(2), 218-238
Gutman, I., Furtula, B. (2019) Graph energies: Survey, census, bibliography. Kragujevac: Centar SANU
Gutman, I., Zhou, B. (2006) Laplacian energy of a graph. Linear Algebra and Its Applications, 414(1), pp. 29-37
Gutman, I. (2020) New bounds for Laplacian energy. Vojnotehnički glasnik, vol. 68, br. 1, str. 1-7
Huigang, Z., Xiao, B., Huaxin, Z., Huijie, Z., Jun, Z., Jian, C., Hanqing, L. (2013) Hierarchical remote sensing image analysis via graph Laplacian energy. IEEE Geoscience Remote Sensing Letters, 10(2), pp.396-400
Lazić, M. (2006) On the Laplacian energy of a graph. Czechoslovak Mathematical Journal, 56(4), pp.1207-1213, http://cmj.math.cas.cz/cmj56-4/10.html [21 February 2020]
Li, X., Shi, Y., Gutman, I. (2012) Introduction. u: Graph Energy, New York, NY: Springer Science & Business Media, 1-9
Luyuan, C., Meng, Z., Shang, L., Xiaoyan, M., Xiao, B. (2010) Shape decomposition for graph representation. u: Lee R., Ma J., Bacon L., Du W., Petridis M. [ur.] Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Studies in Computational Intelligence, Berlin-Heidelberg: Springer, 295, pp. 1-10
Meng, Z., Xiao, B. (2011) High-resolution satellite image classification and segmentation using Laplacian graph energy. u: IEEE Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, July 24-29
Merris, R. (1994) Laplacian matrices of graphs: A survey. Linear Algebra and its Applications, 197-198, pp.143-176
Mohar, B. (1992) Laplace eigenvalues of graphs: A survey. Discrete Mathematics, 109(1-3), pp.171-183
Nikiforov, V. (2007) The energy of graphs and matrices. Journal of Mathematical Analysis and Applications, 326(2): 1472-1475
Pirzada, S., Ganie, H.A. (2015) On the Laplacian eigenvalues of a graph and Laplacian energy. Linear Algebra and its Applications, 486, 454-468
Pournami, P.N., Govindan, V.K. (2017) Interest point detection based on Laplacian energy of local image network. u: International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, March 22-24
Qi, X., Fuller, E., Wu, Q., Wu, Y., Zhang, C.Q. (2012) Laplacian centrality: A new centrality measure for weighted networks. Information Science, 194, pp.240-253
Qi, X., Fuller, E., Luo, R., Guo, G., Zhang, C. (2015) Laplacian energy of digraphs and a minimum Laplacian energy algorithm. International Journal on the Foundation of Computer Science, 26(3), pp.367-380
Qi, X., Duval, R.D., Christensen, K., Fuller, E., Spahiu, A., Wu, Q., Wu, Y., Tang, W., Zhang, C. (2013) Terrorist networks, network energy and node removal: A new measure of centrality based on Laplacian energy. Social Networking, 02(01), 19-31
Ramane, H.S. (2020) Energy of graphs. u: Pal M., Samanta S., Pal A. [ur.] Handbook of Research on Advanced Applications of Graph Theory in Modern Society, Hershey, PA: IGI Global, pp. 267-296
Song, Y.Z., Arbelaez, P., Hall, P., Li, C., Balikai, A. (2010) Finding semantic structures in image hierarchies using Laplacian graph energy. u: Daniilidis K., Maragos P., Paragios N. [ur.] Computer Vision - ECCV 2010. ECCV 2010, Lecture Notes in Computer Science, 6314, Berlin: Springer, pp.694-707
Xiao, B., Song, Y.Z., Hall, P. (2011) Learning invariant for object identification by using graph methods. Computer Vision and Image Understanding, 115(7), pp.1023-1031
Zou, H.L., Yu, Z.G., Anh, V., Ma, Y.L. (2018) From standard Alpha-stable Lévy motions to horizontal visibility networks: dependence of multifractal and Laplacian spectrum. Journal of Statistical Mechanics Theory and Experiment, (May), https://iopscience.iop.org/article/10.1088/1742-5468/aaac3d/pdf [Accessed: 21 February 2020]