Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 6 od 10  
Back povratak na rezultate
2021, vol. 48, br. 2, str. 165-174
Uticaj vlage i temperature na toplotna svojstva semena pasulja ("Canavalia ensiformis")
aLadoke Akintola University of Technology, Faculty of Engineering and Technology, Department of Agricultural Engineering, Ogbomoso, Oyo State, Nigeria
bModibbo Adama University of Technology, Faculty of Agriculture, Department of Food Science and Technology, Yola, Adamawa State, Nigeria
cLadoke Akintola University of Technology, Faculty of Engineering and Technology, Department of Food Engineering, Ogbomoso, Oyo State, Nigeria

e-adresajbhussein01@mautech.edu.ng
Ključne reči: džek pasulj; leguminoze; sadržaj vlage; temperatura; toplotna svojstva; termalni analizator
Sažetak
Određena su toplotna svojstva (specifični toplotni kapacitet, toplotna provodljivost i toplotna difuzivnost) semena džek pasulja (Canavalia ensiformis), neophodna u projektovanju opreme potrebne za toplotne procese. Toplotna svojstva su određena pri 5, 10, 15, 20 i 25% udela vlage i temperaturama na 30, 40 i 50 ºC pomoću termalnog analizatora KD2 Pro. Rezultati su pokazali da se specifični toplotni kapacitet kretao od 1,55 do 2,47 kJ/kgK, 1,26 do 1,84 kJ/kgK i 1,32 do 1,99 kJ/kgK; toplotna provodljivost od 0,21 do 0,47 W/mK, 0,34 do 0,52 W/mK i 0,26 do 0,60 W/mK i toplotna difuzivnost od 0,25 do 0,41 x 10-7 m²/s, 0,32 do 0,57 x 10-7 m² i 10-7 m² do 0,60 x 10-7 m²/s na 30, 40, odnosno 50 °C za proučavane sadržaje vlage. Uticaj temperature i sadržaja vlage nije bio značajan (p>0,05) na specifičnu toplotu i toplotnu difuzivnost, ali je bio značajan (p<0,05) na toplotnu provodljivost po modelu polinoma trećeg reda. Utvrđen je nelinearni odnos između tri toplotna parametra i sadržaja vlage unutar proučavanog temperaturnog raspona. Rezultirajući regresioni modeli za toplotna svojstva imali su visoki koeficijent korelacije (R2 ≥ 0,7995), što ukazuje da se mogu koristiti za opisivanje odnosa između temperature, vlage i toplotnih svojstava semena džek pasulja.
Reference
Abioye, A.O., Adekunle, A.A., Agbasi-Ebere, V. (2016) Some Moisture-Dependent Physical and Thermal Properties of Bambara Groundnut. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10(10): 65-74
Akpapunam, M.A., Sefa-Dedeh, S. (1997) Jack Bean (Canavalia ensiformis): Nutrition Related Aspects and Needed Nutrition Research. Plant Foods for Human Nutrition, 50(2): 93-99
Aremu, A.K., Fadele, O.K. (2010) Moisture Dependence Thermal Properties of Doum Palm Fruit (Hyphaene thebaica). Journal of Emerging Trends in Engineering and Applied Sciences, 1(2): 199-204
Arinola, S.O., Adesina, K. (2014) Effect of Thermal Processing on the Nutritional, Antinutritional, and Antioxidant Properties of Tetracarpidium conophorum (African Walnut). Journal of Food Processing, 1-4
Aviara, N.A., Haque, M.A. (2001) Moisture Dependence of Thermal Properties of Sheanut Kernel. Journal of Food Engineering, 47(2): 109-113
Aviara, N.A., Haque, M.A., Ogunjimi, L.A.O. (2008) Thermal Properties of Guna Seeds. International Agrophysics, 22(4): 291-297
Bart-Plange, A., Addo, A., Kumi, F., Piegu, A.K. (2012) Some Moisture Dependent Thermal Properties of Cashew Kernel (Anarcardium occidentale L.). Australian Journal of Agricultural Engineering, 3(2): 65-69
Bitra, V.S.P., Banu, S., Ramkrishna, P., Narender, G., Womac, A.R. (2010) Moisture Dependent Thermal Properties of Peanut Pods, Kernels, and Shells. Journal of Food Engineering, 106(4): 503-512
Carson, J.K. (2017) Use of Simple Thermal Conductivity Models to Assess the Reliability of Measured Thermal Conductivity Data. International Journal of Refrigeration, 74: 458-464
Chakraborty, S.M., Johnson, W.H. (1999) Specific Heat of Flue Cured Tobacco by Differential Scanning Calorimeter. Transactions of the American Society of Agricultural Engineers, 15(5): 928-931
Chandrasekar, V., Viswanathan, R. (1999) Physical and Thermal Properties of Coffee. Journal of Agricultural Engineering Research, 73(3): 227-234
Chauhan, B., Gupta, R. (2004) Application of Statistical Experimental Design for Optimization of Alkaline Protease Production from Bacillus sp. RGR-14. Process Biochemistry, 39(12): 2115-2122
Embaby, H.E.S. (2010) Effect of Heat Treatments on Certain Antinutrients and in Vitro Protein Digestibility of Peanut and Sesame Seeds. Food Science and Technology Research, 17(1): 31-38
Gabriel, R.A.O., Akinyosoye, F.A., Adetuyi, F.C. (2011) Nutritional Composition of Canavalia ensiformis (L.) (Jack Beans) as Affected by the Use of Mould Starter Cultures for Fermentation. Trends in Applied Sciences Research, 6: 463-471
Gharibzahedi, S.M.T., Etemad, V., Mirarab-Razi, J., Foshat, M. (2010) Study on Some Engineering Attributes of Pine Nut (Pinus Pinea) to the Design of Processing Equipment. Research in Agricultural Engineering, 56(3): 99-106
Gharibzahedi, S.M.T., Ghahderijani, M., Lajevardi, Z.S. (2013) Specific Heat, Thermal Conductivity and Thermal Diffusivity of Red Lentil Seed as a Function of Moisture Content. Journal of Food Processing and Preservation, 38(4): 1807-1811
Hsu, R.H., Mannapperuma, J.D., Singh, R.P. (1991) Physical and Thermal Properties of Pistachios. Journal of Agricultural Engineering Research, 49: 311-321
Isa, J., Oladele, S.O., Akinlade, E.S. (2014) The Effect of Moisture Content on Thermal Properties of Some Selected Species of Egusi Melon (Colocynthis citrillus L.). International Journal of Emerging Technology and Advanced Engineering, 4(4): 580-586
Koocheki, A., Taherian, A.R., Razavi, S.M., Bostan, A. (2009) Response Surface Methodology for Optimization of Extraction Yield, Viscosity, Hue and Emulsion Stability of Mucilage Extracted from Lepidium Perfoliatum Seeds. Food Hydrocolloids, 23(8): 2369-2379
Kurozawa, L.W., Park, K.J., Azonbel, P.M. (2008) Thermal Conductivity and Thermal Diffusivity of Papaya (Carica papaya L.) and Cashew Apple (Anacardium occidentale L.). Brazilian Journal of Food Technology, 11(1): 78-85
Marimuthu, M., Gurumoorthi, P. (2013) Physicochemical and Functional Properties of Starches from Indian Jack Bean (Canavalia ensiformis), an Underutilized Wild Food Legume. Journal of Chemical and Pharmaceutical Research, 5(1): 221-225
Michael, K.G., Sogbesan, O.A., Onyia, L.U. (2018) Effect of Processing Methods on the Nutritional Value of Canavalia Ensiformis Jack Bean Seed Meal. Journal of Food Process Technology, 9(766)
Oriola, K.O. (2014) Effects of Ageing and Moisture Content on Thermal Properties of Cassava Roots Using Response Surface Methodology. International Journal of Applied Agricultural and Apicultural Research, 10(1-2): 54-63
Oriola, K.O., Hussein, J.B., Oke, M.O., Ajetunmobi, A. (2020) Description and Evaluation of Physical and Moisture Dependent Thermal Properties of Jack Bean Seeds (Canavalia ensiformis). Journal of Food Processing and Preservation, 45(2): e15166
Oriola, K.O., Oke, M.O., Hussein, J.B., Adebesin, K.T. (2016) Thermal Properties of Cooked Locust Bean (Parkia biglobosa) Seeds as Affected by Temperaturemoisture Interactions. Nigerian Journal of Horticultural Science, 21(2016): 48-56
Osuigwe, D.I., Obiekezie, A.I., Onuoha, G.C. (2006) Effects of Jackbean Seed Meal on the Intestinal Mucosa of Juvenile Heterobranchus Longifilis. African Journal of Biotechnology, 5(13): 1294-1298
Ranjeet, P., Singh, R.K.R., Varun, T., Mallesha,, Raju, P.S. (2016) Nutritional Evaluation of Canavalia ensiformis (Jack Bean) Cultivated in North East Region of India. International Journal of Botany Studies, 1(6): 18-21
Razavi, S.M.A., Taghizadeh, M. (2007) The Specific Heat of Pistachio Nuts as Affected by Moisture Content, Temperature, and Variety. Journal of Food Engineering, 79(1): 158-167
Sadiku, O.A., Bamgboye, I. (2014) Moisture Dependent Mechanical and Thermal Properties of Locust Bean (Parkia biglobosa). Agricultural Engineering International: CIGR Journal, 16(1): 99-106
Singh, K.K., Goswami, T.K. (2000) Thermal Properties of Cumin Seed. Journal of Food Engineering, 45(4): 181-187
Subramanian, S., Vistwanathan, R. (2003) Thermal Properties of Minor Millet Grains and Flours. Biosystems Engineering, 84(3): 289-296
Tansakul, A., Lumyong, R. (2008) Thermal Properties of Straw Mushroom. Journal of Food Engineering, 87: 91-98
Yang, W., Sokhansanj, S., Tang, J., Winter, P. (2002) Determination of Thermal Conductivity, Specific Heat, and Thermal Diffusivity of Borage Seeds. Biosystems Engineering, 82(2): 169-176
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/ffr48-33814
primljen: 05.09.2021.
revidiran: 03.12.2021.
prihvaćen: 07.12.2021.
objavljen onlajn: 15.12.2021.
objavljen u SCIndeksu: 25.03.2022.
metod recenzije: jednostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka