Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:12
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 10 od 10  
Back povratak na rezultate
2021, vol. 48, br. 2, str. 213-225
Sadržaj arsena i fenolnih jedinjenja u peršunu ("Petroselinum" crispum (mill.) fuss) i celeru ("Apium graveolens" L.) gajenih na području Vojvodine, Srbija
aUniverzitet u Novom Sadu, Prirodno-matematički fakultet, Departman za biologiju i ekologiju
bUniverzitet u Novom Sadu, Prirodno-matematički fakultet, Departman za hemijsku tehnologiju i zaštitu životne sredine

e-adresadanijela.arsenov@dbe.uns.ac.rs
Projekat:
The research was conducted and funded within the project entitled: "Biologically active components and medical potential of functional food grown in Vojvodina Province, Serbia" no. 114-451-2149/2016-03, financed by the Provincial Secretariat for Science and Technological Development, Autonomous Province of Vojvodina, Serbia.
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Novom Sadu, Prirodno-matematički fakultet) (MPNTR - 451-03-68/2020-14/200125)

Ključne reči: arsen; povrće; antioksidativni odgovor; fenolna jedinjenja; PCA analiza
Sažetak
Veliki broj biljaka iz familije Apiaceae, među kojima su peršun i celer, se koristi u svakodnevnoj ishrani kao povrće bogato vitaminima, mineralima, biološki aktivnim jedinjenima i antioksidativnim svojstvima. Međutim, povrtarske vrste mogu sadržati povećenane koncentracije polutanata, poput teških metala, što može uticati na smanjeni kvalitet povrća i negativno uticati na zdravlje ljudi. U cilju utvrđivanja kvaliteta peršuna i celera gajenih na teritoriji Vojvodine (Srbija) uzorci navedenih vrsta su prikupljeni sa različitih lokaliteta i određen je sadržaj arsena (As), kao i sadržaj biološki aktivnih jedinjenja i antioksidativnog kapaciteta. Rezultati su pokazali da se koncentracija arsena kretala u rasponu: koren peršuna (0,16 mg/g d.m.) < koren celera (0,19 mg/g d.m.) < list peršuna (0,35 mg/g d.m.) < list celera (0,45 mg/g d.m.). Sadržaj ukupnih fenola se nije signifikantno razlikovao između vrsta, ali je značajno varirao u zavisnosti od mesta gajenja i kretao su u opsegu: 5,03-9,18 mg eqGA/g u peršunu i 5,04-8,50 mg eqGA/g u celeru. Takođe, dobijeni rezultati su ukazali na blagu do umerenu antioksidativnu aktivnost obe vrste, dok su značajne razlike utvrđene između lokaliteta gajenja. Kada su u pitanju ukupni fenoli, niži sadržaj je zabeležen u korenu celeru. Među fenolnim kiselinama dominirale su ferulna, hlorogena i cimetna kiselina. Apigenin i njegovi glukozidi su dominirali među flavonoidima. Na osnovu analize glavnih komponenti (PCA analiza) može se zaključiti da je sadržaj As varirao u zavisnosti od geografskog porekla uzoraka. Takođe, značajan doprinos u razdvajanju grupa u PCA analizi pokazuje fenolni profil, kao i kumarini koji su doprineli radvajanju uzoraka na osnovu lokaliteta gajenja.
Reference
*** (2009) Strategija vodosnabdevanja i zaštite voda u AP Vojvodini. Novi Sad: Univerzitet u Novom Sadu - Prirodno-matematički fakultet - Departman za hemiju, http://www.ekourbapv.vojvodina.gov.rs/wpcontent/uploads/2018/09/sajt-strategijavodosnabdevanja-i-zastite-voda-apv.pdf
Agyare, C., Appiah, Y.D.B., Apenteng, J.A. (2017) Petroselinum Crispum: A Review. u: Kuete V. [ur.] Medicinal Species and Vegetable from Africa, Cambridge, UK: Academic Press, 527-547
Arsenov, D., Župunski, M., Pajević, S., Nemeš, I., Simin, N., Alnuqaydan, A.M., Watson, M., Aloliqi, A.A., Mimica-Dukić, N. (2021) Roots of Apium Graveolens and Petroselinum Crispuminsight into Phenolic Status Against Toxicity Level of Trace Elements. Plants, 10(9): Article1785
Arsenov, D., Župunski, M., Pajević, S., Borišev, M., Nikolić, N., Mimica-Dukić, N. (2021) Health Assessment of Medicinal Herbs, Celery and Parsley Related to Cadmium Soil Pollutionpotentially Toxic Elements (PTEs) Accumulation, Tolerance Capacity and Antioxidative Response. Environmental Geochemistry and Health, 43: 2927-2943
Aust, S.D. (1985) Lipid Peroxidation. u: Greenwald R.A. [ur.] Handbook of Methods for Oxygen Radical Research, Boca Raton Florida: CRC Press, 203-207
Beara, I.N., Lesjak, M.M., Orčić, D.Z., Simin, N.Đ., Četojević-Simin, D.D., Božin, B.N., Mimica-Dukić, N.M. (2012) Comparative Analysis of Phenolic Profile, Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Two Closely-Related Plantain Species: Plantago altissima L. and Plantago lanceolata L. LWT: Food Science and Technology, 47(1): 64-70
Bencko, V., Foong, F.Y.L. (2017) The History of Arsenical Pesticides and Health Risks Related to the Use of Agent Blue. Annals of Agricultural and Environmental Medicine, 24(2): 312-316
Bhattacharya, P., Samal, A.C., Majumdar, J., Santra, S.C. (2010) Arsenic Contamination in Rice, Wheat, Pulses, and Vegetables: a Study in an Arsenic Affected Area of West Bengal, India. India. Water Air and Soil Pollution, 213: 3-13
Bisset, N.G., Wichtl, M. (1994) Herbal Drugs and Phytopharmaceuticals. Stuttgart: Medpharm GmbH Scientific Publishers
Chang, C.C., Yang, M.H., Wen, H.M., Chern, J.C. (2002) Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Journal of Food and Drug Analysis, 10: 178-182
Cvejić-Hogervorst, J., Russo, G., Godos, J., Mimica-Dukić, N., Simin, N., Bjelica, A., Grosso, G. (2018) Beneficial Effects of Polyphenols on Chronic Diseases and Ageing. u: Galanakis C.M. [ur.] Polyphenols: Properties, Recovery and Application, Oxford, UK: Woodhead Publishing, 69-103
Dahal, B.M., Fuerhacker, M., Mentler, A., Karki, K.B., Shrestha, R.R., Blum, W.E. (2008) Arsenic Contamination of Soils and Agricultural Plants Through Irrigation Water in Nepal. Environmental Pollution, 155(1): 157-163
FAO, WHO (2015) Codex Alimentarius-General Standards for Contaminants and Toxins in Food and Feed. u: CODEX STAN, 193-1995
Farzaei, M.H., Abbasabadi, Z., Rahimi, R., Farzaei, F. (2013) Parley: A Review of Ethnopharmacology, Phytochemistry and Biological Activities. Journal of Traditional Chinese Medicine, 33: 815-826
Finnegan, P.M., Chen, W. (2012) Arsenic Toxicity: The Effects on Plant Metabolism. Frontiers in Physiology, 3: Article 182
Gupta, D.K., Tripathi, R.D., Mishra, S., Srivastava, S., Dwivedi, S., Rai, U.N., Yang, X.E., Huanji, H., Inouhe, M. (2008) Arsenic Accumulation in Root and Shoot Vis-a-Vis Its Effects on Growth and Level of Phytochelatins in Seedlings of Cicer Arietinum L. Journal of Environmental Biology, 29(3): 281-286
Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fujita, M., Fotopoulos, V. (2020) Reactive Oxygen Species and Antioxidant Defence in Plants Under Abiotic Stress: Revisiting the Crucial Role of a Universal Defence Regulator. Antioxidants, 9(8): 681-681
Jain, A., Yadav, A., Bozhkov, A.I., Padalko, V.I., Flora, S.J.S. (2011) Therapeutic Efficacy of Silymarin and Naringenin in Reducing Arsenic-Induced Hepatic Damage in Young Rats. Ecotoxicology and Environmental Safety, 74(4): 607-614
Kapaj, S., Peterson, H., Liber, K., Bhattacharya, P. (2006) Human Health Effects from Chronic Arsenic Poisoning: A Review. Journal of Environmental Science and Health, Part A, 41(10): 2399-2428
Kostecka-Gugała, A., Latowski, D. (2018) Arsenicinduced Oxidative Stress in Plants. u: Hasanuzzaman M., Nahar K., Fujita M. [ur.] Mechanisms of Arsenic Toxicity and Tolerance in Plants, Singapore: Springer, 79-104
Liu, W.J., Wood, B.A., Raab, A., Mcgrath, S.P., Zhao, F.J., Feldmann, J. (2010) Complexation of Arsenite with Phytochelatins Reduces Arsenite Efflux and Translocation from Roots to Shoots. Plant Physiology, 152: 2211-2221
Mcbride, M.B., Shayler, H.A., Russell-Anelli, J.M., Spliethoff, H.M., Marquez-Bravo, L.G. (2015) Arsenic and Lead Uptake by Vegetable Crops Grown on an Old Orchard Site Amended with Compost. Water Air and Soil Pollution, 226(8): Article 265
Mcbride, M.B., Spiers, G. (2001) Trace Element Content of Selected Fertilizers and Dairy Manures as Determined by ICP-MS. Communications in Soil Science and Plant Analysis, 32: 139-156
Mencherini, T., Cau, A., Bianco, G., della Loggia, R., Aquino, R.P., Autore, G. (2007) An Extract of Apium Graveolens Var. Dulce Leaves: Structure of the Major Constituent, Apiin, and Its Antiinflammatory Properties. Journal of Pharmacy and Pharmacology, 59: 891-897
Michalak, A. (2006) Phenolic Compounds and Their Antioxidant Activity in Plants Growing Under Heavy Metal Stress. Polish Journal of Environmental Studies, 15(4): 523-530
Mimica-Dukić, N., Popović, M. (2007) Apiaceae Species: A Promising Source of Pharmacologically Active Compounds I: Petrosellinum Crispum, Apium Greveolens and Pastinaca Sativa. u: Govil J.N., Singh V.K. [ur.] Recent Progress in Medicinal Plants: Phytopharmacology and Therapeutic Values III, Houston: Studim Press LLC, 132-133
Mišan, A. (2011) Antioxidant Properties of Food Supplemented with Medicinal Plants. Food and Feed Research, 37(2): 81-85
Mollah, M.Y.A., Lu, F., Cocke, D.L. (1998) An X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopic (FT-IR) Characterization of the Speciation of Arsenic (V) in Portland Cement Type-V. Science of the Total Environment, 224: 57-68
Nikolić, N., Cvetković, D., Todorović, Z. (2011) A Characterization of Content, Composition and Antioxidant Capacity of Phenolic Compounds in Celery Roots. Italian Journal of Food Science, 23(2): 214-219
Nikolić, N.P., Borišev, M.K., Pajević, S.P., Arsenov, D.D., Župunski, M.D. (2014) Comparative assessment of mineral elements and heavy metals accumulation in vegetable species. Food and Feed Research, vol. 41, br. 2, str. 115-123
Odobasic, A., Sestan, I., Bratovcic, A. (2017) Extraction of Heavy Metals from Vegetable Samples: Ingredients. u: Grumezescu A.M., Holban A.M. [ur.] Ingredients Extraction by Physicochemical Methods in Food, Cambridge, UK: Academic Press, 253-273
Pajević, S., Arsenov, D., Nikolic, N., Borisev, M., Orcic, D., Zupunski, M., Mimica-Dukic, N. (2018) Heavy Metal Accumulation in Vegetable Species and Health Risk Assessment in Serbia. Environmental Monitoring and Assessment, 190(8): Article 459
Pan, X.D., Wu, P.G., Jiang, X.G. (2016) Levels and Potential Health Risk of Heavy Metals in Marketed Vegetables in Zhejiang, China. Scientific Reports, 6: Article 20317
Peng, L., Jia, J., Daihui, Z., Jingli, X., Xueshu, X., Dongzhi, W. (2004) In vitro and In vivo Antioxidant Activities of a Flavonoid Isolated from Celery (Apium graveolens L. var. dulce). Food & Function Journal, 5: 50-56
Perez-Gutierre, R., Muniz-Ramirez, A., Campoy, A.H.G., Flores, J.M.M., Flores, S.O. (2018) Polyphenols of Leaves of Apium Graveolens Inhibit In vitro Protein Glyction and Protect RINm5F Cells Against Methylglyoxal-Induced Cytotoxicity. Functional Foods in Health and Disease, 8(3): 193-211
Popova, M., Stoyanova, A., Valyovska-Popova, N., Bankova, V., Peev, D. (2014) A New Coumarin and Total Phenolic and Flavonoids Content of Bulgarian Celeriac. Bulgarian Chemical Communications, 64(A): 88-93
Popović, M., Kaurinović, B., Jakovljević, V., Mimica-Dukić, N., Bursać, M. (2007) Effect of Parsley Extract on Some Biochemical Parameters of Oxidative Stress in Mice Treated with Cl4. Phytotherapy Research, 21(8): 717-723
Pyne, S., Santra, S.C. (2017) Accumulation of Arsenic, Copper and Iron in Common Medicinal Plants of Murshidabad District, West Bengal, India. Journal of Experimental & Clinical Cancer Research, 9: 54-62
R Development Core Team R (2016) A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, https://www.R-project.org
Rusin, M., Domagalska, J., Rogala, D., Razzaghi, M., Szymala, I. (2021) Concentration of Cadmium and Lead in Vegetables and Fruits. Scientific Reports, 11: Article 11913
Savić, R., Ondrasek, G., Josimov-Dundjerski, J. (2015) Heavy Metals in Agricultural Landscapes as Hazards to Human and Ecosystem Health: A Case Study on Zinc and Cadmium in Drainage Channel Sediments. Journal of the Science of Food and Agriculture, 95: 466-470
Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. (1999) Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods in Enzymology, 299: 152-178
Soler-Rivas, C., Espín, J.C., Wichers, H.J. (2000) An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochemical Analysis, 11: 330-338
Stankevićius, M., Akunaca, I., Jacobsone, I., Maruška, A. (2011) Comparative Analysis of Radical Scavenging and Antioxidant Activity of Phenolic Compounds Present in Everyday Use Spice Plants by Means of Spectrophotometric and Chromategraphic Methods. Journal of Separation Science, 34: 1261-1267
U.S. EPA. (2014) Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry. Washington, DC, Revision 2
Ulusu, Y., Ozturk, L., Elmastas, M. (2017) Antioxidant Capacity and Cadmium Accumulation in Parsley Seedlings Exposed to Cadmium Stress. Russian Journal of Plant Physiology, 64(6): 883-888
Wuana, R.A., Okieimen, F.E. (2011) Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecology, e402647
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/ffr48-34625
primljen: 27.10.2021.
revidiran: 30.11.2021.
prihvaćen: 15.12.2021.
objavljen onlajn: 15.12.2021.
objavljen u SCIndeksu: 25.03.2022.
metod recenzije: jednostruko anoniman

Povezani članci

Nema povezanih članaka