Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:10
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 5 od 12  
Back povratak na rezultate
2022, vol. 73, br. 1, str. 25-29
Volumetrijska analiza hipokampusne formacije i amigdaloidnog kompleksa u animalnom modelu posttraumatskog stresnog poremećaja
aUniverzitet u Beogradu, Medicinski fakultet
bUniverzitet u Beogradu, Medicinski fakultet + Univerzitet u Beogradu, Medicinski fakultet, Institut za anatomiju

e-adresaivanisevicmilica4@gmail.com
Sažetak
Uvod: Posttraumatski stresni poremećaj (PTSP) predstavlja mentalni poremećaj koji se javlja nakon životno ugrožavajućih situacija. Animalni modeli u psihijatrijskim studijama predstavljaju osnovu iz koje se dobijeni rezultati mogu preneti na humanu populaciju. Hipokampusna formacija i amigdaloidni kompleks su dva neuroanatomska supstrata, moguće krucijalna za patogenezu ovog poremećaja. Cilj: Cilj ovog rada je izučavanje volumetrijskih promena vezanih za animalni model PTSP-a u hipokampusu i amigdali. Materijal i metode: Eksperiment je vođen na odraslim Vistar pacovima. Životinje su bile podeljene u eksperimentalnu i kontrolnu grupu. Eksperimentalna paradigma je trajala 31 dan, tokom kojih su životinje izlagane akutnom i hroničnom stresu. Akutni stres je izveden prvog dana i deset dana kasnije. Tokom svih ostalih dana životinje su izlagane hroničnom socijalnom stresu izvođenjem rotacije. Pre drugog izlaganja akutnom stresu eksperimentalna grupa je bila podeljena na dve podgrupe, od kojih je jedna primila dozu deksametazona. Nakon završetka eksperimenta, životinje su žrtvovane i uzeti su mozgovi. Tkivo je zamrznuto i pripremljeni su isečci za mikroskopiju. Vršene su volumetrijske analize hipokampusa i amigdale. Merenja su bila bilateralna i korišćen je program Image Tool 3.0. Software. Obe eksperimentalne podgrupe su poređene sa kontrolnom grupom. Rezultati: Na osnovu merenja pronađene su statistički značajne volumetrijske promene u hipokampusu i amigdali. Hipokampus je imao manji volumen u eksperimentalnoj podgrupi koja nije primila deksametazon (x̄ = 0,6144) u poređenju sa kontrolnom grupom (x̄ = 0,9688). Amigdala je takođe imala manji volumen u ovoj podgrupi u poređenju sa kontrolom (x̄ = 10,0156, x̄ = 11,5041). Zaključak: Rezultati istraživanja ukazuju na važnost hipokampusne formacije i amigdaloidnog kompleksa za etiologiju ovog poremećaja. Dalje proširenje studije bi nam moglo pomoći da bolje razumemo uzroke i promene koje nastaju u sklopu PTSP-a.
Reference
Barbano, A.C., van der Mei, W.F., Bryant, R.A., Delahanty, D.L., Deroon-Cassini, T.A., Matsuoka, Y.J., et al. (2019) Clinical Implications of the Proposed ICD-11 PTSD Diagnostic Criteria. Psychol Med, 49(3): 483-490
Bonne, O., Vythilingam, M., Inagaki, M., Wood, S., Neumeister, A., Nugent, A.C., et al. (2008) Reduced Posterior Hippocampal Volume in Posttraumatic Stress Disorder. J Clin Psychiatry, 69(7): 1087-1091
Borghans, B., Homberg, J.R. (2015) Animal Models for Posttraumatic Stress Disorder: An Overview of What Is Used in Research. World J Psychiatry, 5(4): 387-396
de Quervain, D., Schwabe, L., Roozendaal, B. (2017) Stress, Glucocorticoids and Memory: Implications for Treating Fear-Related Disorders. Nat Rev Neurosci, 18(1): 7-19
Ding, J., Han, F., Shi, Y. (2010) Single-Prolonged Stress Induces Apoptosis in the Amygdala in a Rat Model of Post-Traumatic Stress Disorder. J Psychiatr Res, 44(1): 48-55
Gilbertson, M.W., Shenton, M.E., Ciszewski, A., Kasai, K., Lasko, N.B., Orr, S.P., et al. (2002) Smaller Hippocampal Volume Predicts Pathologic Vulnerability to Psychological Trauma. Nat Neurosci, 5(11): 1242-1247
Girgenti, M.J., Hare, B.D., Ghosal, S., Duman, R.S. (2017) Molecular and Cellular Effects of Traumatic Stress: Implications for PTSD. Curr Psychiatry Rep, 19(11): 85-85
Golub, Y., Kaltwasser, S.F., Mauch, C.P., Herrmann, L., Schmidt, U., Holsboer, F., et al. (2011) Reduced Hippocampus Volume in the Mouse Model of Posttraumatic Stress Disorder. J Psychiatr Res, 45(5): 650-659
Goswami, S., et al. (2012) A Rat Model of Post-Traumatic Stress Disorder Reproduces the Hippocampal Deficits Seen in the Human Syndrome. Frontiers in Behavioral Neuroscience, 6: 26-26
Herringa, R., Phillips, M., Almeida, J., Insana, S., Germain, A. (2012) Post-Traumatic Stress Symptoms Correlate with Smaller Subgenual Cingulate, Caudate, and Insula Volumes in Unmedicated Combat Veterans. Psychiatry Res Neuroimaging, 203(2): 139-145
Karl, A., Schaefer, M., Malta, L.S., Dorfel, D., Rohleder, N., Werner, A. (2006) A Meta-Analysis of Structural Brain Abnormalities in PTSD. Neurosci Biobehav Rev, 30(7): 1004-1031
Kim, J.J., Diamond, D.M. (2002) The Stressed Hippocampus, Synaptic Plasticity and Lost Memories. Nat Rev Neurosci, 3(6): 453-462
Kuo, J.R., Kaloupek, D.G., Woodward, S.H. (2012) Amygdala Volume in Combat-Exposed Veterans with and Without Posttraumatic Stress Disorder: A Cross-Sectional Study. Arch Gen Psychiatry, 69(10): 1080-1086
Mcgaugh, J.L., Cahill, L., Roozendaal, B. (1996) Involvement of the Amygdala in Memory Storage: Interaction with Other Brain Systems. Proc Natl Acad Sci, 93(24): 13508-13514
Moore, N.L.T., Gauchan, S., Genovese, R.F. (2012) Differential Severity of Anxiogenic Effects Resulting from a Brief Swim or Underwater Trauma in Adolescent Male Rats. Pharmacol Biochem Behav, 102(2): 264-268
Myers, B., Mcklveen, J.M., Herman, J.P. (2014) Glucocorticoid Actions on Synapses, Circuits, and Behavior: Implications for the Energetics of Stress. Front Neuroendocrinol, 35(2): 180-196
Paxinos, G., Watson, C. (2006) The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier
Richter-Levin, G., Stork, O., Schmidt, M.V. (2019) Animal Models of PTSD: A Challenge to Be Met. Mol Psychiatry, 24(8): 1135-1156
Sapolsky, R.M., Romero, L., Munck, A.U. (2000) How Do Glucocorticoids Influence Stress Responses?: Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions. Endocr Rev, 21(1): 55-89
Schuff, N., Neylan, T.C., Lenoci, M.A., Du, A.T., Weiss, D.S., Marmar, C.R., Weiner, M.W. (2001) Decreased Hippocampal N-Acetylaspartate in the Absence of Atrophy in Posttraumatic Stress Disorder. Biol Psychiatry, 50(12): 952-959
van Dijken, H.H., van der Heyden, J.A.M., Mos, J., Tilders, F.J.H. (1992) Inescapable Footshocks Induce Progressive and Long-Lasting Behavioural Changes in Male Rats. Physiol Behav, 51(4): 787-794
Wignall, E.L., Dickson, J.M., Vaughan, P., Farrow, T.F.D., Wilkinson, I.D., Hunter, M.D., et al. (2004) Smaller Hippocampal Volume in Patients with Recent-onset Posttraumatic Stress Disorder. Biol Psychiatry, 56(11): 832-836
Winter, H., Irle, E. (2004) Hippocampal Volume in Adult Burn Patients With and Without Posttraumatic Stress Disorder. Am J Psychiatry, 161(12): 2194-2200
Zohar, J., Matar, M.A., Ifergane, G., Kaplan, Z., Cohen, H. (2008) Brief Post-Stressor Treatment with Pregabalin in an Animal Model for PTSD: Short-Term Anxiolytic Effects Without Long-Term Anxiogenic Effect. Eur Neuropsychopharmacol, 18(9): 653-666
Zoladz, P.R., Conrad, C.D., Fleshner, M., Diamond, D.M. (2008) Acute Episodes of Predator Exposure in Conjunction with Chronic Social Instability as an Animal Model of Post-Traumatic Stress Disorder. Stress, 11(4): 259-281
Zoladz, P.R., Fleshner, M., Diamond, D.M. (2012) Psychosocial Animal Model of PTSD Produces a Long-lasting Traumatic Memory, an Increase in General Anxiety and PTSD-Like Glucocorticoid Abnormalities. Psychoneuroendocrinology, 37(9): 1531-1545
 

O članku

jezik rada: engleski
vrsta rada: originalan članak
DOI: 10.5937/mp73-33408
objavljen u SCIndeksu: 12.05.2022.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka