Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:11
  • preuzimanja u poslednjih 30 dana:7
članak: 2 od 2  
Back povratak na rezultate
Vojnosanitetski pregled
2017, vol. 74, br. 6, str. 526-535
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.2298/VSP151120249D
Creative Commons License 4.0
Kompleksna modulacija sila tokom preciznog hvata šake primenom ponavljane transkranijalne magnetne stimulacije pražnjenjima u teta frekvenciji iznad dorzalnog premotornog korteksa
aUniversity of Belgrade, Faculty of Sport and Physical Education, Belgrade + Preschool Teacher Training College, Šabac
bUniverzitet u Beogradu, Biološki fakultet
cUniverzitet u Beogradu, Fakultet sporta i fizičkog vaspitanja
dUniverzitet u Beogradu, Institut za medicinska istraživanja, Beograd
eMilitary Medical Academy, Clinic of Neurology, Belgrade + University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade

e-adresa: tihoilic@gmail.com

Projekat

Ćelijska i molekulska osnova neuroinflamacije: potencijala ciljna mesta za translacionu medicinu i terapiju (MPNTR - 41014)
Project of the Ministry of Defense of the Republic of Serbia (MFVMA/07/16-18)

Sažetak

Uvod/Cilj. Adaptivna kontrola i sinhronizacija sila prstiju šake tokom preciznog hvata pri manipulisanju malim predmetima jednom rukom predstavlja ilustrativni primer visoko frakcionisanih pokreta koji predstavljaju temelj motorne kontrole preciznih pokreta. Pretpostavlja se da ovim procesom upravlja nekoliko motornih oblasti frontalnog režnja, i to prvenstveno primarni motorni (M-1) i dorzalni premotorni korteks (PMd). Cilj istraživanja bio je ispitivanje uloge PMd-a tokom vršenja pokreta koji zahtevaju finu koordinaciju sila prstiju šake. U istraživanju smo primenili ponavljanu magnetnu stimulaciju pražnjenjima u teta frekvenciji, kako bi ometali neuralno procesiranje u toj oblasti moždane kore. Metode. Primenom jednostrano slepe studije, uz nasumičnu raspodelu i ukršteni dizajn, 10 zdravih ispitanika (29 ± 3,9 godina) bilo je izloženo pojedinačnim sesijama kontinuirane magnetne stimulacije (cTBS600), ili intermitentne ponavljane magnetne stimulacije (iTBS600), pražnjenjima u teta frekvenciji kao i prividnoj stimulaciji iznad PMd regiona dominantne hemisfere, odvojenih međusobno, najkraće nedelju dana. Precizanost hvata šake i podizanja procenjivani su uređajem koji je registrovao silu stiska (G) i silu podizanja (L) prilikom izvođenja tri zadatka (zadatak sa zadatim profilom L, zadatak sa oscilatornim variranjem nivoa L i zadatak sa podizanjem), koji su izvođeni sa obe ruke odvojeno, i to pre i nakon svake intervencije. Rezultati. Nakon primene iTBS protokola zabeleženo je poboljšanje izvođenja iskazano konstantnom greškom (CE) u zadatku sa oscilatornim variranjem nivoa L, kada je izvođen dominantnom rukom (DH), p = 0.009. Suprotno tome, primena cTBS protokola dovela je do smanjenja promenjive greške (VE) za nedominantnu ruku (NH), p = 0.005. Sa aspekta koordinacije sila utvrđeno je da je iTBS protokol doveo do pogoršanja rezultata praćenih pokazatelja za nedominantnu ruku (G/L odnos, p = 0.017; korelacija G i L, p = 0.047; prirast sile p = 0.047). Zaključak. Rezultati našeg istraživanja ukazuju na mogućnost modulacije sila prstiju šake tokom preciznog hvata i podizanja, ukoliko se TBS primeni iznad PMd-a. Dobijeni nalazi podržavaju ulogu PMd u motornoj kontroli i generisanju sila neophodnih za stabilno držanje malih predmeta kod ljudi.

Ključne reči

Reference

Busan, P., Barbera, C., Semenic, M., Monti, F., Pizzolato, G., Pelamatti, G., Battaglini, P.P. (2009) Effect of Transcranial Magnetic Stimulation (TMS) on Parietal and Premotor Cortex during Planning of Reaching Movements. PLoS ONE, 4(2): e4621
Carson, R.G. (2005) Neural pathways mediating bilateral interactions between the upper limbs. Brain Research Reviews, 49(3): 641-662
Castiello, U., Begliomini, C. (2008) The Cortical Control of Visually Guided Grasping. Neuroscientist, 14(2): 157-170
Chouinard, P. A. (2003) Modulating Neural Networks With Transcranial Magnetic Stimulation Applied Over the Dorsal Premotor and Primary Motor Cortices. Journal of Neurophysiology, 90(2): 1071-1083
Chouinard, P.A., Leonard, G., Paus, T. (2005) Role of the primary motor and dorsal premotor cortices in the anticipation of forces during object lifting. Journal of neuroscience, 25(9): 2277-84
Danion, F. (2007) The contribution of non-digital afferent signals to grip force adjustments evoked by brisk unloading of the arm or the held object. Clinical neurophysiology, 118(1): 146-54
de Freitas, P.B., Krishnan, V., Jaric, S. (2007) Force coordination in static manipulation tasks: effects of the change in direction and handedness. Experimental brain research, 183(4): 487-97
Di, L.V., Pilato, F., Dileone, M., Profice, P., Oliviero, A., Mazzone, P., Insola, A., Ranieri, F., Meglio, M., Tonali, P. A., Rothwell, J. C. (2008) The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. Journal of Physiology, 586(16): 3871-3879
Flanagan, J., Wing, AlanM. (1993) Modulation of grip force with load force during point-to-point arm movements. Experimental Brain Research, 95(1):
Flanagan, J., Tresilian, J., Wing, A.M. (1993) Coupling of grip force and load force during arm movements with grasped objects. Neuroscience Letters, 152(1-2): 53-56
Flanagan, J.R., Tresilian, J.R. (1994) Grip-load force coupling: A general control strategy for transporting objects. Journal of Experimental Psychology: Human Perception and Performance, 20(5): 944-957
Fling, B.W., Benson, B.L., Seidler, R.D. (2011) Transcallosal sensorimotor fiber tract structure-function relationships. Human Brain Mapping, 34(2): 384-395
Geyer, S., Matelli, M., Luppino, G., Zilles, K. (2000) Functional neuroanatomy of the primate isocortical motor system. Anatomy and Embryology, 202(6): 443-474
Grefkes, C., Eickhoff, S.B., Nowak, D.A., Dafotakis, M., Fink, G.R. (2008) Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. NeuroImage, 41(4): 1382-1394
Häger-Ross, C., Johansson, R.S. (1996) Nondigital afferent input in reactive control of fingertip forces during precision grip. Exp Brain Res, 110(1): 131-41
Halsband, U., Freund, H.-J. (1990) Premotor cortex and conditional motor learning in man. Brain, 113(1): 207-222
Hao, Y., Zhang, Q., Controzzi, M., Cipriani, C., Li, Y., Li, J., Zhang, S., Wang, Y., Chen, W., Chiara, C.M., Zheng, X. (2014) Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex. Journal of Neural Engineering, 11(6): 066011
Huang, Y., Edwards, M.J., Rounis, E., Bhatia, K.P., Rothwell, J.C. (2005) Theta burst stimulation of the human motor cortex. Neuron, 45(2): 201-6
Jaric, S., Uygur, M. (2013) Assessment of Hand Function Through the Coordination of Contact Forces in Manipulation Tasks. Journal of Human Kinetics, 36(1):
Jaric, S., Knight, C.A., Collins, J.J., Marwaha, R. (2005) Evaluation of a method for bimanual testing coordination of hand grip and load forces under isometric conditions. Journal of electromyography and kinesiology, 15(6): 556-63
Johansson, R.S., Westling, G. (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3):
Johansson, R.S., Birznieks, I. (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nature Neuroscience, 7(2): 170-177
Johansson, R.S., Flanagan, J. R. (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10(5): 345-359
Keel, J.C., Smith, M.J., Wassermann, E.M. (2001) A safety screening questionnaire for transcranial magnetic stimulation. Clinical neurophysiology, 112(4): 720
Kinsbourne, M. (1974) Mechanisms of hemispheric interaction in man. u: Kinsbourne M., Smith W.L. [ur.] Hemispheric disconnection and cerebral function, Springfield, IL: Charles C. Thomas, str. 260-85
Kollias, S.S., Alkadhi, H., Jaermann, T., Crelier, G., Hepp-Reymond, M. (2001) Identification of multiple nonprimary motor cortical areas with simple movements. Brain Research Reviews, 36(2-3): 185-195
Krishnan, V., Jaric, S. (2008) Hand function in multiple sclerosis: Force coordination in manipulation tasks. Clinical Neurophysiology, 119(10): 2274-2281
Lenzi, D., Conte, A., Mainero, C., Frasca, V., Fubelli, F., Totaro, P., Caramia, F., Inghilleri, M., Pozzilli, C., Pantano, P. (2007) Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: A functional and anatomical study. Human Brain Mapping, 28(7): 636-644
Macefield, VaughanG., Johansson, RonaldS. (1996) Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits. Experimental Brain Research, 108(1):
Napier, J. R. (2009) Studies of the hands of living primates. Proceedings of the Zoological Society of London, 134(4): 647-657
Neva, J.L., Singh, A.M., Vesia, M., Staines, W. R. (2014) Selective modulation of left primary motor cortex excitability after continuous theta burst stimulation to right primary motor cortex and bimanual training. Behavioural Brain Research, 269: 138-146
Nirkko, A.C., Ozdoba, C., Redmond, S.M., Bürki, M., Schroth, G., Hess, C.W., Wiesendanger, M. (2001) Different Ipsilateral Representations for Distal and Proximal Movements in the Sensorimotor Cortex: Activation and Deactivation Patterns. NeuroImage, 13(5): 825-835
Oldfield, R.C. (1971) The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1): 97-113
Petrides, M. (1985) Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behavioural Brain Research, 16(2-3): 95-101
Rizzolatti, G., Luppino, G., Matelli, M. (1998) The organization of the cortical motor system: new concepts. Electroencephalography and Clinical Neurophysiology, 106(4): 283-296
Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., Matelli, M. (1988) Functional organization of inferior area 6 in the macaque monkey. Experimental Brain Research, 71(3): 491-507
Rizzolatti, G., Luppino, G. (2001) The Cortical Motor System. Neuron, 31(6): 889-901
Rossi, S., Hallett, M., Rossini, P.M., Pascual-Leone, A. (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical neurophysiology, 120(12): 2008-39
Rossini, P.M., Burke, D., Chen, R., Cohen, L.G., Daskalakis, Z., Di, I.R., Di, L.V., Ferreri, F., Fitzgerald, P.B., George, M.S., Hallett, M., Lefaucheur, J.P., Langguth, B., Matsumoto, H., Miniussi, C., Nitsche, M.A., Pascual-Leone, A., Paulus (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology, 126(6): 1071-1107
Walsh, V., Cowey, A. (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews Neuroscience, 1(1): 73-80
Westling, G., Johansson, R.S. (1984) Factors influencing the force control during precision grip. Experimental Brain Research, 53(2):
Whishaw, I.Q., Karl, J.M. (2014) The contribution of the reach and the grasp to shaping brain and behaviour. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 68(4): 223-235
Zatsiorsky, V.M., Gao, F., Latash, M.L. (2005) Motor control goes beyond physics: differential effects of gravity and inertia on finger forces during manipulation of hand-held objects. Experimental Brain Research, 162(3): 300-308