- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:0
- preuzimanja u poslednjih 30 dana:0
|
|
2017, vol. 70, br. 11-12, str. 445-448
|
In situ analiza mitohondrijalnog respiratornog kapaciteta - okosnica budućih istraživanja iz ćelijske fiziologije
In situ analysis of mitochondrial respiratory capacity: Foundation for cellular physiology
Garipi Enisa, Rakovac Aleksandraa  , Barak Ottoa  , Lukač Damira, Naumović Nadaa, Drapšin Miodraga, Karaba Deaa, Popadić-Gaćeša Jelenaa  , Klašnja Aleksandara, Slavić Danijela  , Karan Vedranaa, Bogdan Majaa, Oluić Stevana, Ljubković Markob
aUniverzitet u Novom Sadu, Medicinski fakultet, Katedra za fiziologiju bUniversity of Split School of Medicine, Department of Physiology, Croatia
e-adresa: enis.garipi@mf.uns.ac.rs
Sažetak
Mitohondrije su sveprisutne organele eukariotskih ćelija i predstavljaju glavno mesto za stvaranje energije u formi adenozin trifosfata kroz proces oksidativne fosforilacije. Analiza i procena mitohondrijalne funkcije je od velikog značaja za izučavanje intraćelijskog energetskog metabolizma, mehanizama programirane ćelijske smrti, signalnih puteva, skladištenja kalcijuma i patofiziologije širokog spektra bolesti čoveka uključujući različite forme neurodegenerativnih oboljenja, miopatija, metaboličkog sindroma i kancera. Analiza respiratornog kapaciteta pokriva jednu od mnogih uloga koje mitohondrija igra u živim ćelijama i pruža nam važne podatke o funkcionalnom integritetu mitohondrija. Ocena pojedinih kompleksa respiratornog lanca ili drugih mitohondrijalnih enzima se uveliko primenjuje u proceni mitohondrijalne funkcije ili disfunkcije, međutim ona zanemaruje uticaj kompleksne funkcionalne i strukturne povezanosti mitohondrijalnih enzima i proteina i plazmatskih komponenti. Druga metoda ističe važnost izučavanja intaktnih mitohondrija u in vitro uslovima. Iako ova metoda ima brojne prednosti, u pojedinim aspektima funkcionalne ocene mitohondrija ona je nepotpuna. Sa aspekta proizvodnje i potrošnje energije, srčani mišić je izrazito zahtevno tkivo i upravo je očuvan rad mitohondrija preduslov za ostvarivanje njegove uloge. U saradnji sa Medicinskim fakultetom u Splitu i pod mentorstvom prof. dr Marka Ljubkovića, Katedra za fiziologiju na Medicinskom fakultetu Novi Sad radi na uvođenju metode in situ procene mitohondrijalne respiratorne funkcije na diseciranim mišićnim vlaknima humanog srčanog tkiva.
Abstract
Mitochondria are ubiquitous organelles of eukaryotic cells and they are the mayor site of generating energy in the form of adenosine triphoshate through the process of oxidative phosphorylation. Analysis and estimation of mitochondrial function is of outmost importance when it comes to studying intracellular energy metabolism, mechanisms of apoptosis, signaling pathways, calcium storage and the pathophysiology of a large spectrum of human diseases including various neurodegenerative diseases, myopathies, metabolic syndromes and cancer. Respiratory capacity analysis covers one of the many roles that mitochondria play in living cells and it provides us with useful data about functional integrity of mitochondria. Assessment of individual respiratory chain complexes or other mitochondrial enzymes has been widely used to estimate mitochondrial function and dysfunction but it neglects the influence of complex structural and functional interplay of mitochondrial proteins and enzymes and plasmic compounds. Another method that emphasises the importance of studying intact mitochondria is in vitro technique, and although it has many advantages, in some aspects it is far from being representative when it comes to functional assessment of mitochondria. From the perspective of energy production and consumption, the cardiac muscle is a highly demanding tissue and it is the well functioning of mitochondria that is conditio sine qua non for this nature to be fulfilled. In cooperation with the University of Split School of Medicine in Split and under the mentorship of Prof. Marko Ljubkovic, the Department of Physiology of the Faculty of Medicine Novi Sad works on introducing in situ approaches in the analysis of respiratory mitochondrial function in skinned muscle fibers of human cardiac tissue.
|
|
|
Reference
|
|
Boczek, T., Lisek, M., Ferenc, B., Kowalski, A., Wiktorska, M., Zylinska, L. (2014) Silencing of Plasma Membrane Ca 2+ -ATPase Isoforms 2 and 3 Impairs Energy Metabolism in Differentiating PC12 Cells. BioMed Research International, 2014: 1-13
|
|
Boron, W.F., Boulpaep, E.L. (2012) Medical physiology. Philadelphia: Saunders, 2nd ed
|
|
Cavar, M., Ljubkovic, M., Bulat, C., Bakovic, D., Fabijanic, D., Kraljevic, J., Karanovic, N., Dujic, Z., Lavie, C., Wisloff, U., Marinovic, J. (2016) Trimetazidine does not alter metabolic substrate oxidation in cardiac mitochondria of target patient population. British Journal of Pharmacology, 173(9): 1529-1540
|
|
Chance, B., Williams, G.R. (1955) Respiratory enzymes in oxidative phosphorylation: Difference spectra. J Biol Chem, II, 217(1):395-407
|
|
Chance, B., Williams, G.R. (1956) Respiratory enzymes in oxidative phosphorylation: The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem, VI, 221(1): 477-89
|
|
de Oliveira, M.R., Elangovan, N., Ljubkovic, M., Baranova, A. (2015) The Roads to Mitochondrial Dysfunction. BioMed Research International, 2015: 1-2
|
|
Frezza, C., Cipolat, S., Scorrano, L. (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. Nature Protocols, 2(2): 287-295
|
|
Jeger, V., Brandt, S., Porta, F., Jakob, S.M., Takala, J., Djafarzadeh, S. (2015) Dose Response of Endotoxin on Hepatocyte and Muscle Mitochondrial Respiration In Vitro. BioMed Research International, 2015: 1-12
|
|
Koeppen, B.M., Stanton, B.A. (2010) Berne & Levy physiology. Philadelphia: Mosby, 6th ed
|
|
Kuznetsov, A.V., Veksler, V., Gellerich, F.N., Saks, V., Margreiter, R., Kunz, W.S. (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nature Protocols, 3(6): 965-976
|
|
Macarini, J.R., Maravai, S.G., Cararo, J.H., Dimer, N.W., Gonçalves, C.L., Kist, L.W., Bogo, M.R., Schuck, P.F., Streck, E.L., Ferreira, G.C. (2014) Impairment of Electron Transfer Chain Induced by Acute Carnosine Administration in Skeletal Muscle of Young Rats. BioMed Research International, 2014: 1-10
|
|
Piper, H., Sezer, O., Schleyer, M., Schwartz, P., Hutter, J., Spieckermann, P. (1985) Development of ischemia-induced damage in defined mitochondrial subpopulations. Journal of Molecular and Cellular Cardiology, 17(9): 885-896
|
|
Salabei, J.K., Gibb, A.A., Hill, B.G. (2014) Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nature Protocols, 9(2): 421-438
|
|
Sharma, L., Lu, J., Bai, Y. (2009) Mitochondrial Respiratory Complex I: Structure, Function and Implication in Human Diseases. Current Medicinal Chemistry, 16(10): 1266-1277
|
|
Su, J., Zhou, L., Xia, M., Xu, Y., Xiang, X., Sun, L. (2014) Bcl-2 Family Proteins Are Involved in the Signal Crosstalk between Endoplasmic Reticulum Stress and Mitochondrial Dysfunction in Tumor Chemotherapy Resistance. BioMed Research International, 2014: 1-5
|
|
|
|