Article metrics

  • citations in SCindeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[=>]
  • visits in previous 30 days:2
  • full-text downloads in 30 days:2
article: 7 from 22  
Back back to result list
Acta medica Medianae
2018, vol. 57, iss. 3, pp. 82-88
article language: English
document type: Original Paper
published on: 10/01/2019
doi: 10.5633/amm.2018.0311
Creative Commons License 4.0
Apparent diffusion coefficient(ADC): Of peritumoral tissue in differentiation of brain metastases from gliomas
Univeristy of Niš, Faculty of Medicine



Peritumoral edema of high grade gliomas represents a combination of neoplastic cell infiltration and vasogenic edema, while peritumoral edema of intracranial metastases is purely vasogenic. The aim of this study was to examine whether ADC can be used as a noninvasive parameter to distinguish peritumoral brain tissue in metastases from peritumoral tissue in cerebral gliomas. A prospective study involved 71 patients, 22 with histologically proven intracranial metastases and 49 with gliomas. All patients underwent conventional MRI and DWI up to 7 days before undergoing surgery. ADC values were obtained in three regions of interest within peritumoral brain tissue and compared with the histopathological findings. The mean minimum ADC values in the peritumoral regions of low grade gliomas were significantly higher (< 0.001) than those of high grade gliomas. The mean minimum ADC values in the peritumoral regions of metastases were significantly higher than those in high grade gliomas. The ADC values of peritumoral brain tissue of lung carcinoma metastases (0.000947 ± 0.000043 mm2/s), melanoma (0.000842 ± 0.000018 mm2/s) and breast metastases (0.000783 ± 0.000048 mm2/s) were significantly higher than the ADC values of peritumoral brain tissue of astrocytoma grade I (0.000775 ± 0.000013 mm2/s), grade II (0.000411 ± 0.000005 mm2/s), grade III (0.000121 ± 0.000004 mm2/s) and glioblastoma multiforme (0.000076 ± 0.000011 mm2/s). The minimum ADC values of the peritumoral edema in brain metastases were significantly higher than those in gliomas. ADC values can provide additional diagnostic information for distinguishing gliomas from metastases.


brain imaging; brain metastases; diffusion-weighted imaging; cerebral gliomas


Bozgeyik, Z., Onur, M.R., Poyraz, A.K. (2013) The role of diffusion weighted magnetic resonance imaging in oncologic settings. Quant Imaging Med Surg, 3: 269-78
Chiang, I. C., Kuo, Y., Lu, C., Yeung, K., Lin, W., Sheu, Feng-O., Liu, G. (2004) Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology, 46(8):
Ellingson, B.M., Cloughesy, T.F., Lai, A., Nghiemphu, P.L., Pope, W.B. (2011) Cell invasion, motility, and proliferation level estimate (CIMPLE) maps derived from serial diffusion MR images in recurrent glioblastoma treated with bevacizumab. Journal of Neuro-Oncology, 105(1): 91-101
Gauvain, K.M., McKinstry, R.C., Mukherjee, P., Perry, A., Neil, J.J., Kaufman, B.A., Hayashi, R.J. (2001) Evaluating Pediatric Brain Tumor Cellularity with Diffusion-Tensor Imaging. American Journal of Roentgenology, 177(2): 449-454
Hayashida, Y., Hirai, T., Morishita, S., Kitajima, M., Murakami, R., Korogi, Y. (2006) Diffusion-weighted imaging of metastatic brain tumors: Comparison with histologic type and tumor cellularity. AJNR, 27: 1419-25
Ignjatović, J., Stojanov, D., Živković, V., Ljubisavljević, S., Stojanović, N., Stefanović, I., Benedeto-Stojanov, D., Ignjatović, N., Petrović, S., Aracki-Trenkić, A., Radovanović, Z., Lazović, L. (2015) Apparent diffusion coefficient in the evaluation of cerebral gliomas malignancy. Vojnosanitetski pregled, vol. 72, br. 10, str. 870-875
Inouey, K.K., Nakayama, K., Shakudo, M., Morino, M., Ohata, K., i dr. (2011) The role of diffusion-weighted imaging in patients with brain tumors. AJNR, 22: 1081-8
Kitis, O., Altay, H., Calli, C., Yunten, N., Akalin, T., Yurtseven, T. (2005) Minimum apparent diffusion coefficients in the evaluation of brain tumors. European Journal of Radiology, 55(3): 393-400
Krabbe, K., Gideon, P., Wagn, P., Hansen, U., Thomsen, C., Madsen, F. (1997) MR diffusion imaging of human intracranial tumours. Neuroradiology, 39(7): 483-489
Lee, C., Wintermark, M., Xu, Z., Yen, C., Schlesinger, D., Sheehan, J.P. (2014) Application of diffusion-weighted magnetic resonance imaging to predict the intracranial metastatic tumor response to gamma knife radiosurgery. Journal of Neuro-Oncology, 118(2): 351-361
Lee, E.J., terBrugge Karel,, Mikulis, D., Choi, D.S., Bae, J.M., Lee, S.K., Moon, S.Y. (2011) Diagnostic Value of Peritumoral Minimum Apparent Diffusion Coefficient for Differentiation of Glioblastoma Multiforme From Solitary Metastatic Lesions. American Journal of Roentgenology, 196(1): 71-76
Miquelini, L.A., Pérez, A.M.S., Funes, J.A., Besada, C.H. (2016) Usefulness of the apparent diffusion coefficient for the evaluation of the white matter to differentiate between glioblastoma and brain metastases. Radiología (English Edition), 58(3): 207-213
Oh, J., Cha, S., Aiken, A.H., Han, E.T., Crane, J.C., Stainsby, J.A., Wright, G.A., Dillon, W.P., Nelson, S.J. (2005) Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema. Journal of Magnetic Resonance Imaging, 21(6): 701-708
Pauleit, D., Langen, K., Floeth, F., Hautzel, H., Riemenschneider, M.J., Reifenberger, G., Shah, N. J., Müller, H. (2004) Can the apparent diffusion coefficient be used as a noninvasive parameter to distinguish tumor tissue from peritumoral tissue in cerebral gliomas?. Journal of Magnetic Resonance Imaging, 20(5): 758-764
Provenzale, J.M., McGraw, P., Mhatre, P., Guo, A.C., Delong, D. (2004) Peritumoral Brain Regions in Gliomas and Meningiomas: Investigation with Isotropic Diffusion-weighted MR Imaging and Diffusion-Tensor MR Imaging. Radiology, 232(2): 451-460
Sinha, S., Bastin, M.E., Whittle, I.R., Wardlaw, J.M. (2002) Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR, 23: 520-7
Stadnik, T.W., Chaskis, C., Michotte, A., Shabana, W.M., van Rompaey, K., Luypaert, R., i dr. (2001) Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR, 22: 969-76
Tien, R.D., Felsberg, G.J., Friedman, H., Brown, M., MacFall, J. (1994) MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. American Journal of Roentgenology, 162(3): 671-677
Tsougos, I., Svolos, P., Kousi, E., Fountas, K., Theodorou, K., Fezoulidis, I., Kapsalaki, E. (2012) Differentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T. Cancer Imaging, 12(3): 423-436
Wang, S., Kim, S., Chawla, S., Wolf, R.L., Knipp, D.E., Vossough, A., o`Rourke D.M., Judy, K.D., Poptani, H., Melhem, E.R. (2011) Differentiation between Glioblastomas, Solitary Brain Metastases, and Primary Cerebral Lymphomas Using Diffusion Tensor and Dynamic Susceptibility Contrast-Enhanced MR Imaging. American Journal of Neuroradiology, 32(3): 507-514
Yang, D., Korogi, Y., Sugahara, T., Kitajima, M., Shigematsu, Y., Liang, L., Ushio, Y., Takahashi, M. (2002) Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology, 44(8): 656-666