Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:[3]
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:3
članak: 2 od 4  
Back povratak na rezultate
Zaštita materijala
2015, vol. 56, br. 4, str. 435-445
jezik rada: engleski
vrsta rada: naučni članak
objavljeno: 11/06/2016
doi: 10.5937/ZasMat1504435R
Abrazivna otpornost betona spravljenog sa mikrovlaknima i recikliranom granulisanom gumom
Univerzitet u Nišu, Građevinsko-arhitektonski fakultet

e-adresa: gordana.toplicic.curcic@gaf.ni.ac.rs

Projekat

Istraživanje mogućnosti primene otpadnih i recikliranih materijala u betonskim kompozitima, sa ocenom uticaja na životnu sredinu, u cilju promocije održivog građevinarstva u srbiji (MPNTR - 36017)

Sažetak

Trajnost betonskih građevinskih konstrukcija u najvećoj meri zavisi od otpornosti njihovih površina prema mehaničkom habanju. U radu su prikazani rezultati eksperimentalnog istraživanja performansi u svežem i očvrslom stanju različitih vrsta betona, kao i uporedna analiza otpornosti prema habanju brušenjem i hidro-abrazivne otpornosti betona. Za potrebe istraživanja napravljeno je šest serija betona: etalon beton (E), beton sa delimičnom zamenom sitnog rečnog agregata recikliranom granulisanom gumom (ER), dve serije betona sa dodatkom polipropilenskih vlakana (monofilamentnih (EPM)i fibriliranih (EPF)) i dve serije betona sa dodatkom čeličnih vlakana sa ojačanim krajevima (kraća - dužine 30mm (ESS) i duža - dužine 50 mm (ESL)). Utvrđeno je da dodatak mikroarmature ili reciklirane granulisane gume doprinosi povećanju otpornosti betona prema habanju brušenjem i hidro-abrazivne otpornosti. Postoji razlika u otpornosti prema habanju betona u zavisnosti od metode ispitivanja.

Ključne reči

beton; reciklirana granulisana guma; polipropilenska vlakna; čelična vlakna; otpornost prema habanju brušenjem; hidro-abrazivna otpornost

Reference

Binici, H., Aksogan, O., Gorur, E.B., Kaplan, H., Bodur, M.N. (2009) Hydro-abrasive erosion of concrete incorporating ground blast-furnace slag and ground basaltic pumice. Construction and Building Materials, 23(2): 804-811
Chen, P.W., Xuli, F., Chung, D.D. (1997) Microstructural and Mechanical Effects of Latex, Methylcellulose, and Silica Fume on Carbon Fiber Reinforced Cement. ACI Materials Journal, 94(2): 147-155
Chernov, V., Zlotnikov, H., Shadalov, M. (2006) Structural synthetic fiber-reinforced concrete: Experience with marine applications. Concrete International, 8, 56-61
Choi, S., Bolander, J.E. (2012) A topology measurement method examining hydraulic abrasion of high workability concrete. KSCE Journal of Civil Engineering, 16(5): 771-778
Grdic, Z.J., Curcic-Toplicic, G.A., Ristic, N.S., Despotovic, I.M. (2012) Abrasion resistance of concrete micro-reinforced with polypropylene fibers. Construction and Building Materials, 27(1): 305-312
Hadchti, K., Carrasquillo, R. (1988) Abrasion resistance and scaling resistance of concrete containing fly ash, research report. University of Texas at Austin, p. 481-83
Higgins, P., Kurtovich, M. (2003) Repairing critical assets using high performance calcium aluminate cements. u: M-NZ Concrete Society Conference, Wairakei, October, p. 23-28
Horszczaruk, E. (2004) Abrasion resistance of high strength fibre reinforced concrete. u: Fibre-Reinforced Concretes BEFIB'2004, RILEM Publications S.A.R.L., Bagneux, vol. 1, p. 257-266
Horszczaruk, E.K. (2009) Hydro-abrasive erosion of high performance fiber-reinforced concrete. Wear, 267(1-4): 110-115
Hu, X., Momber, A., Yin, Y., Wang, H., Cui, D. (2004) High-speed hydrodynamic wear of steel-fibre reinforced hydraulic concrete. Wear, 257(5-6): 441-450
Hu, X.G., Momber, A.W., Yin, Y.G. (2002) Hydro-abrasive erosion of steel-fibre reinforced hydraulic concrete. Wear, 253(7-8): 848-854
Jacobs, F. (2003) Betonabrasion im Wasserbau. Beton, 1, 16-23
Laplante, P., Aitcin, P.‐C., Vézina, D. (1991) Abrasion Resistance of Concrete. Journal of Materials in Civil Engineering, 3(1): 19-28
Liu, Y., Yen, T., Hsu, T. (2006) Abrasion erosion of concrete by water-borne sand. Cement and Concrete Research, 36(10): 1814-1820
Liu, Y. (2007) Improving the abrasion resistance of hydraulic-concrete containing surface crack by adding silica fume. Construction and Building Materials, 21(5): 972-977
Mcdonald, J.E. (2000) Evaluation of materials for repair of erosion damage in hydraulic structures, durability of concrete. u: Fifth International Conference Barcelona, ACI SP-192, Farmington Hills, Proceedings, vol. II, p. 887-898
Mehta, P., Monteiro, P.J.M. (2006) Concrete structure, properties, and materials. McGraw-Hill Companies, Inc, third ed. Copyright © 2006
Naik, T., Singh, S., Ramme, B. (1998) Mechanical Properties and Durability of Concrete Made with Blended Fly Ash. ACI Materials Journal, 95(4): 454-462
Pichor, W., Dyczek, J. (1997) Early formation on the interfacial zone in FRC with PAN fibers. u: Int. Symposium Brittle Matrix Composites 5, PAN, Warsow, Proc, p. 74-78
Ristić, N., Grdić, Z., Topličić-Ćurčić, G. (2012) Influence of fly ash on the hydroabrasion-erosion resistance on concrete in hydraulic structures. u: Proceedings of the 12th International Scientific Conference 'Planning, design, construction and renewal in the civil engineering', Novi Sad, Serbia, p. 658-665
Ristić, N., Grdić, Z., Topličić-Ćurčić, G., Despotović, I. (2011) Hydro-abrasive resistance of micro-reinforced concrete with steel and polypropylene fibres. u: International symposium about research and application of modern achievements in civil engineering in the field of materials and structures, Tara, Serbia, p. 125-134
Sadegzadeh, M., Kettle, R., Vassou, V. (2001) The influence of glass, polypropylene and steel fibers on the physical properties of concrete. Concrete, 35, 12-22
Siddique, R., Khatib, J.M. (2009) Abrasion resistance and mechanical properties of high-volume fly ash concrete. Materials and Structures, 43(5): 709-718
Sobolev, K. (2004) The development of a new method for the proportioning of high-performance concrete mixtures. Cement and Concrete Composites, 26(7): 901-907
Šušteršič, J. (2004) Abrazijsko odporni betoni. u: 11. slovenski kolokvij o betonih - Gradnja z betoni visokih zmogljivosti, Zbornik gradiv in referatov, Ljubljana, Slovenia, p. 41-48
Tas, M.A., I'lki, A., Yerlikaya, M. (2002) Mechanical behaviour of steel fibre reinforced concrete used in hydraulic structures. u: HYDRO, International Conference of Hydropower and Dams, 4-7 October, Kiris-Antalya, p. 159-166
Toutanji, H.A. (1996) The use of rubber tire particles in concrete to replace mineral aggregates. Cement and Concrete Composites, 18(2): 135-139
Yalçınkaya, C., Sznajder, J., Beglarigale, A., Sancakoğlu, O., Yazıcı, H. (2014) Abrasion resistance of reactive powder concrete: The influence of water-tocement ratio and steel micro-fibers. Adv. Mat. Lett, 5(6), 345-351
Yazıcı, Ş., İnan, G. (2006) An investigation on the wear resistance of high strength concretes. Wear, 260(6): 615-618
Yen, T., Hsu, T., Liu, Y., Chen, S. (2007) Influence of class F fly ash on the abrasion-erosion resistance of high-strength concrete. Construction and Building Materials, 21(2): 458-463