• citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:9
  • full-text downloads in 30 days:8


article: 6 from 8  
Back back to result list
2016, vol. 50, iss. 1, pp. 17-25
Predictive significance of myeloperoxidase for the occurrence of postoperative vascular complications
aUniversity of Priština - Kosovska Mitrovica, Faculty of Medicine, Clinical Hospital Center
bClinical Center Kragujevac, Clinic for General and Thoracic Surgery + University of Kragujevac, Faculty of Medical Sciences
cDom zdravlja 'Medicus Universalis', Kraljevo
New findings on the activity of myeloperoxidase in the course of an inflammatory process associated with infections and vascular lesions indicate its role in the state of oxidative stress and endothelial dysfunction as well as its predictive value for cardiovascular insults. The products of actions by myeloperoxidase represent an integrative mechanism connecting the tissue lesions, infectious, inflammatory processes, oxidative stress, endothelial dysfunction and the development of vascular insult (the most common are the arterial and venous thrombosis and consecutive embolism). The most common complications of an operative surgical treatment are vascular. Seen from a conservative standpoint the most common are arterial and venous thrombosis, but more broadly suture dehiscence could be considered as a consequence of the impaired microcirculation. Operational procedures as well as the underlying pathology lead to the activation of inflammatory cascade with the activation of myeloid lineage cells whereby a release and activation of myeloperoxidase, which in addition to antimicrobial exerts multiple vascular operations. Increased concentrations of myeloperoxidase in the plasma up to three months before the clinical expression of vascular insult indicates its predictive value. Current research portrays the possibility of adjusting the successful result of the action of myeloperoxidase and prevention of vascular complications.
Abu-Soud, H.M., Hazen, S.L. (2000) Nitric oxide is a physiological substrate for mammalian peroxidases. Journal of biological chemistry, 275(48): 37524-32
Baldus, S., Heitzer, T., Eiserich, J.P., Lau, D., Mollnau, H., Ortak, M., Petri, S., Goldmann, B., Duchstein, H., Berger, J., Helmchen, U., Freeman, B.A., Meinertz, T., Münzel, T. (2004) Myeloperoxidase enhances nitric oxide catabolism during myocardial ischemia and reperfusion. Free radical biology & medicine, 37(6): 902-11
Baldus, S., Rudolph, V., Roiss, M., Ito, W.D., Rudolph, T.K., Eiserich, J.P., Sydow, K., Lau, D., Szöcs, K., Klinke, A., Kubala, L., Berglund, L., Schrepfer, S., Deuse, T., Haddad, M., Risius, T., Klemm, H. (2006) Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase. Circulation, 113(15): 1871-8
Brevetti, G., Schiano, V., Laurenzano, E., Giugliano, G., Petretta, M., Scopacasa, F., Chiariello, M. (2008) Myeloperoxidase, but not C-reactive protein, predicts cardiovascular risk in peripheral arterial disease. European heart journal, 29(2): 224-30
Dominguezrodriguez, A., Samimifard, S., Abreugonzalez, P., Garciagonzalez, M., Kaski, J. (2008) Prognostic Value of Admission Myeloperoxidase Levels in Patients With ST-Segment Elevation Myocardial Infarction and Cardiogenic Shock. American Journal of Cardiology, 101(11): 1537-1540
Garner, B., Witting, P.K., Waldeck, A.R., Christison, J.K., Raftery, M., Stocker, R. (1998) Oxidation of high density lipoproteins. I. Formation of methionine sulfoxide in apolipoproteins AI and AII is an early event that accompanies lipid peroxidation and can be enhanced by alpha-tocopherol. Journal of biological chemistry, 273(11): 6080-7
Gujral, J.S. (2004) Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice. AJP: Gastrointestinal and Liver Physiology, 286(3): 499G-507
Hansson, M., Olsson, I., Nauseef, W.M. (2006) Biosynthesis, processing, and sorting of human myeloperoxidase. Arch Biochem Biophys, 445, str. 214-24
Hawkins, C.L., Pattison, D.I., Stanley, N.R., Davies, M.J. (2008) Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation. Biochemical journal, 416(3): 441-52
Hazen, S.L., Heinecke, J.W. (1997) 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest, 99(9): 2075-81
Hazen, S.L. (2004) Myeloperoxidase and plaque vulnerability. Arteriosclerosis, thrombosis, and vascular biology, 24(7): 1143-6
Jerlich, A., Fabjan, J.S., Tschabuschnig, S., Smirnova, A.V., Horakova, L., Hayn, M., Auer, H., Guttenberger, H., Leis, H., Tatzber, F., Waeg, G., Schaur, R. (1998) Human Low Density Lipoprotein as a Target of Hypochlorite Generated by Myeloperoxidase. Free Radical Biology and Medicine, 24(7-8): 1139-1148
Khan, S.Q., Kelly, D., Quinn, P., Davies, J.E., Ng, L.L. (2007) Myeloperoxidase aids prognostication together with N-terminal pro-B-type natriuretic peptide in high-risk patients with acute ST elevation myocardial infarction. Heart, 93, str. 826-31
Klebanoff, S.J. (2005) Myeloperoxidase: friend and foe. Journal of leukocyte biology, 77(5): 598-625
Kontush, A., Chapman, J.M. (2006) Functionally defective high-density lipoprotein: A new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacological reviews, 58(3): 342-74
Kubala, L., Lu, G., Baldus, S., Berglund, L., Eiserich, J.P. (2008) Plasma levels of myeloperoxidase are not elevated in patients with stable coronary artery disease. Clinica Chimica Acta, 394(1-2): 59-62
Lau, D., Baldus, S. (2006) Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacology & Therapeutics, 111(1): 16-26
Leckie, M.J., Gomma, A.H., Purcell, I.F., Nyawo, B., Dewar, A., Okrongly, D., Burman, J.F., Hooper, J., Barnes, P.J., Clague, J.R., Hansel, T.T. (2004) Automated quantitation of peripheral blood neutrophil activation in patients with myocardial ischaemia. International journal of cardiology, 95(2-3): 307-13
Liu, R.Q., Geren, L., Anderson, P., Fairris, J.L., Peffer, N., McKee, A., Durham, B., Millet, F. (1995) Design of ruthenium-cytochrome c derivatives to measure electron transfer to cytochrome c peroxidase. Biochimie, 77(7-8): 549-61
Malle, E., Marsche, G., Panzenboeck, U., Sattler, W. (2006) Myeloperoxidase-mediated oxidation of high-density lipoproteins: fingerprints of newly recognized potential proatherogenic lipoproteins. Archives of biochemistry and biophysics, 445(2): 245-55
Marsche, G., Furtmüller, P.G., Obinger, C., Sattler, W., Malle, E. (2008) Hypochlorite-modified high-density lipoprotein acts as a sink for myeloperoxidase in vitro. Cardiovascular research, 79(1): 187-94
Meuwese, M.C., Stroes, E.S.G., Hazen, S.L. (2007) Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individualsthe epic-norfolk prospective population study. Journal of the American College of Cardiology, 50(2): 159
Mohiuddin, I., Chai, H., Lin, P.H., Lumsden, A.B., Yao, Q., Chen, C. (2006) Nitrotyrosine and chlorotyrosine: clinical significance and biological functions in the vascular system. Journal of surgical research, 133(2): 143-9
Naghavi, M., Libby, P., Falk, E., Casscells, S., Litovsky, S., Rumberger, J., Badimon, J.J., Stefanadis, C., Moreno, P., Pasterkamp, G., Fayad, Z., Stone, P.H., Waxman, S., Raggi, P. (2003) From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I. Circulation, 108(14): 1664-72
Naruko, T., Ueda, M., Haze, K., van der Wal, A.C., van der Loos, C.M., Itoh, A., Komatsu, R., Ikura, Y., Ogami, M., Shimada, Y., Ehara, S., Yoshiyama, M., Takeuchi, K., Yoshikawa, J. (2002) Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation, 106(23): 2894-900
Ndrepepa, G., Braun, S., Mehilli, J., von Beckerath, N., Schomig, A., Kastrati, A. (2008) Myeloperoxidase level in patients with stable coronary artery disease and acute coronary syndromes. European Journal of Clinical Investigation, 38(2): 90-96
Nicholls, S.J., Hazen, S.L. (2005) Myeloperoxidase and Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(6): 1102-1111
Nicholls, S.J., Zheng, L., Hazen, S.L. (2005) Formation of dysfunctional high-density lipoprotein by myeloperoxidase. Trends in cardiovascular medicine, 15(6): 212-9
Rudolph, V., Steven, D., Gehling, U.M., Goldmann, B., Rudolph, T.K., Friedrichs, K., Meinertz, T., Heitzer, T., Baldus, S. (2007) Coronary plaque injury triggers neutrophil activation in patients with coronary artery disease. Free radical biology & medicine, 42(4): 460-5
Shao, B., Oda, M.N., Oram, J.F., Heinecke, J.W. (2006) Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein. Current opinion in cardiology, 21(4): 322-8
Shih, J., Datwyler, S.A., Hsu, S.C., Matias, M.S., Pacenti, D.P., Lueders, C., Mueller, C., Danne, O., Möckel, M. (2008) Effect of collection tube type and preanalytical handling on myeloperoxidase concentrations. Clinical chemistry, 54(6): 1076-9
Shishehbor, M.H., Aviles, R.J., Brennan, M., Fu, X., Goormastic, M., Pearce, G.L., Gokce, N., Keaney, J.F., Penn, M.S., Sprecher, D.L., Vita, J.A., Hazen, S.L. (2003) Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA, 289(13): 1675-80
Stefanescu, A., Braun, S., Ndrepepa, G., Koppara, T., Pavaci, H., Mehilli, J., i dr. (2008) Prognostic value of plasma myeloperoxidase concentration in patients with stable coronary artery disease. American Heart Journal, 155(2): 356-360
Talib, J., Pattison, D.I., Harmer, J.A., Celermajer, D.S., Davies, M.J. (2012) High plasma thiocyanate levels modulate protein damage induced by myeloperoxidase and perturb measurement of 3-chlorotyrosine. Free Radical Biology and Medicine, 53(1): 20-29
Undurti, A., Huang, Y., Lupica, J.A., Smith, J.D., DiDonato, J.A., Hazen, S.L. (2009) Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. Journal of biological chemistry, 284(45): 30825-35
van DALEN, J. C., WHITEHOUSE, W. M., WINTERBOURN, C. C., KETTLE, J. A. (1997) Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochemical Journal, 327(2): 487-492
Wang, Z., Nicholls, S.J., Rodriguez, E.R., Kummu, O., Horkko, S., Barnard, J., i dr. (2007) Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nature Medicine, 13(10): 1176-1184
Yang, J., Ji, R., Cheng, Y., Sun, J., Jennings, L.K., Zhang, C. (2006) L-arginine chlorination results in the formation of a nonselective nitric-oxide synthase inhibitor. Journal of pharmacology and experimental therapeutics, 318(3): 1044-9
Zhang, G.-X., Kimura, S., Nishiyama, A., Shokoji, T., Rahman, M., Abe, Y. (2003) ROS During the Acute Phase of Ang II Hypertension Participates in Cardiovascular MAPK Activation But Not Vasoconstriction. Hypertension, 43(1): 117-124


article language: Serbian
document type: Review Paper
DOI: 10.5937/mckg50-11448
published in SCIndeks: 27/10/2016

Related records

J Med Biochemistry (2011)
Myeloperoxidase: New roles for an old molecule
Stanković Sanja, et al.

Arhiv za farmaciju (2012)
Influence of hypertrigliceridemia on small, dense LDL and HDL particles in coronary artery disease
Zeljković Aleksandra, et al.

Medicinski pregled (2006)
Atherosclerosis plaque regression
Bošković Srđan D., et al.

show all [14]