Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:13
  • preuzimanja u poslednjih 30 dana:8
članak: 1 od 13  
Back povratak na rezultate
Ekonomika poljoprivrede
2020, vol. 67, br. 2, str. 405-415
jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljeno: 13/07/2020
doi: 10.5937/ekoPolj2002405P
Creative Commons License 4.0
Gross domestic product growth rate analyzing based on price indexes, import and export factors
(naslov ne postoji na srpskom)
aAlfa univerzitet, Fakultet za trgovinu i bankarstvo 'Janićije i Danica Karić', Beograd
bInstitut za ekonomiku poljoprivrede, Beograd

e-adresa: biljana.p85@gmail.com, kuzmanboris@yahoo.com, miljana.barjaktarovic@alfa.edu.rs

Sažetak

(ne postoji na srpskom)
Economic development could be presented by gross domestic product to show how different factors affect the development. Gross domestic product could be affected by different nonlinear factors in positive or negative way. Hence it is suitable to apply artificial intelligence techniques in order to track the gross domestic product variation in depend on the factors. AI techniques require only input and output data pairs in order to catch the output variations based on the input factors. Therefore in this study adaptive neuro fuzzy inference system was applied in order to select the most relevant factors for gross domestic product growth rate. These factors are whole sale price index, consumer price index in urban areas, consumer price index in rural areas, state per capita income, exports, import and industry income. Results shown that the whole sale price index has the highest relevance on the gross domestic product growth rate.

Ključne reči

economic development; price indexes; urban and rural factors; gross domestic product

Reference

Changjiang, L., Wang, K., Zhang, F., Xin, Z. (forthcoming) GDP management to meet or beat growth targets. Journal of Accounting & Economics (JAE), 2018
Đurović-Todorović, J., Tomić, Z., Denić, N., Petković, D., Kojić, N., Petrović, J., Petković, B. (2018) Applicability of Newton's law of cooling in monetary economics. Physica A: Statistical Mechanics and its Applications, 494: 209-217
Hvozdenska, J. (2015) The yield curve as a predictor of gross domestic product growth in Nordic countries. Procedia Economics and Finance, 26(2): 438-445
Jang, J.S.R. (1993) ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3): 665-685
Jović, S., Smigić-Miladinović, J., Micić, R., Marković, S., Rakić, G. (2019) Analysing of exchange rate and gross domestic product (GDP) by adaptive neuro fuzzy inference system (ANFIS). Physica A: Statistical Mechanics and its Applications, 513: 333-338
Konchitchki, Y., Patatoukas, P.N. (2014) Accounting earnings and gross domestic product. Journal of Accounting and Economics, 57(1): 76-88
Kuzman, B., Prodanović, R. (2017) Land management in modern farm production
Kuzman, B., Ercegovac, D., Momčilović, M. (2018) Development of derivative trading on financial market and agribusiness sector in Serbia. Ekonomika poljoprivrede, vol. 65, br. 2, str. 601-616
Kuzman, B., Prdić, N., Dobraš, Z. (2017) The importance of the wholesale markets for trade in agricultural products. Ekonomika poljoprivrede, vol. 64, br. 3, str. 1177-1190
Kuzman, B., Stegić, M., Subić, J. (2016) Market oriented approach of revealed comparative advantage in international trade. Ekonomika poljoprivrede, vol. 63, br. 1, str. 247-260
Marjanović, V., Milovančević, M., Mladenović, I. (2016) Prediction of GDP growth rate based on carbon dioxide (CO2) emissions. Journal of CO2 Utilization, 16: 212-217
Marković, D., Petković, D., Nikolić, V., Milovančević, M., Petković, B. (2017) Soft computing prediction of economic growth based in science and technology factors. Physica A: Statistical Mechanics and its Applications, 465: 217-220
Mladenović, I., Milovančević, M., Sokolov-Mladenović, S., Marjanović, V., Petković, B. (2016) Analyzing and management of health care expenditure and gross domestic product (GDP) growth rate by adaptive neuro-fuzzy technique. Computers in Human Behavior, 64: 524-530
Nedelcu, A., Tătaru, A., Subić, J., Kuzman, B. (2015) The Local Action Group, Local Sevelopment Model based on Community: Case study-LGA 'Land of vineyards and wine' Vrancea. Procedia Economics and Finance, 22: 706-715
Prdić, N., Kuzman, B. (2019) The importance of auctions for agroindustrial products trade. Ekonomika, vol. 65, br. 1, str. 107-116
Subić, J., Cecić, N., Kuzman, B. (2007) Economic aspects of vegetable production in greenhouses: Results of mini projects. Ekonomika poljoprivrede, vol. 54, br. 2, str. 231-240
Tümer, A.E., Akkuş, A. (2018) Forecasting gross domestic product per capita using artificial neural networks with non-economical parameters. Physica A: Statistical Mechanics and its Applications, 512: 468-473
Usha, T.M., Alias, B.S. A. (2017) Computational modeling of electricity consumption using econometric variables based on neural network training algorithms. Neural Network World, 27(1): 139-178