Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:3
članak: 2 od 5  
Back povratak na rezultate
Zaštita materijala
2018, vol. 59, br. 2, str. 159-166
jezik rada: engleski
vrsta rada: naučni članak
doi:10.5937/ZasMat1802159K

Creative Commons License 4.0
PtAu katalizator sa poboljšanom aktivnošću za reakciju oksidacije mravlje kiseline
aUniverzitet u Beogradu, Tehnološko-metalurški fakultet
bUniverzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM, Beograd
cCEST-Centre of Electrochemical Surface Technology GmbH, Wiener Neustadt, Austria
dUniversity of Belgrade, Faculty of Technology and Metallurgy, Belgrade + Serbian Academy of Sciences and Arts, Belgrade

e-adresa: sanjat@tmf.bg.ac.rs

Projekat

Nov pristup dizajniranju materijala za konverziju i skladištenje energije (MPNTR - 172060)
Razvoj, karakterizacija i primena nanostruktuiranih kompozitnih katalizatora i interaktivnih nosača u gorivnim spregovima i elektrolizi vode (MPNTR - 172054)
Sinteza, razvoj tehnologija dobijanja i primena nanostrukturnih multifunkcionalnih materijala definisanih svojstava (MPNTR - 45019)

Sažetak

PtAu sistemi se smatraju veoma dobrim katalizatorima za elektrooksidaciju mravlje kiseline, kao moguće anodne reakcije u niskotemperaturnim gorivnim galvanskim spregovima. U ovom radu bimetalne PtAu nanočestice sintetizovane su mikromulzionim postupkom, i u toku sinteze nanete na ugljenični nosač Vulcan XC-72R. Procesi redukcije prekursora odigravaju se simultano, unutar vodene faze iste mikroemulzije, u prisustvu 35% HCl. Elektrohemijske karakteristike katalizatora ispitivane su cikličnom voltametrijomv na 'as prepared' elektrodama u 0.5M H2SO4 kao osnovnom elektrolitu, kao i prilikom oksidacije adsorbovanog CO. Rezultati su upoređeni sa Pt/C katalizatorom sintetizovanim istim postupkom i pod istovetnim uslovima. Pripremljeni PtAu/C prah okarakterisan je takođe difrakcijom X-zraka, transmisionom elektronskom mikroskopijom i energetski disperzionom spektroskoijom. Veličina čestice određena analizom difraktograma X-zraka iznosi 2nm, što je blisko vrednosti dobijenoj analizom TEM snimaka od 2.82 nm. U poređenju sa Pt nanočesticama sintetizovanim na isti način, bimetalne nanočestice su znatno manjeg prečnika. Mape uzorka PtAu/C dobijene energetski disperzionom spektroskopijom potvrđuju prisustvo oba elementa i pokazuju veoma finu distribuciju Au u uzorku. Analizo mapa utvrđeno je i da je katalizator sastava 20% Au i 80% Pt. Konačno, ispitane su aktivnost i stabilnost bimetalnog katalizatora za oksidaciju mravlje kiseline. Snimljeni voltamogrami ukazuju na promenu reakcionog mehanizma i bolje iskorišćenje površine katalizatora u poređenju ra Pt/C katalizatorom sintetizovanim istim postupkom.

Ključne reči

PtAu nanočestice; mikroemulziona metoda; oksidacija mravlje kiseline

Reference

*** (2003) TOPAS V2. general profile and structure analysis software for powder diffraction data: User manual. Karlsruhe, Germany: Bruker AXS
Bai, Y.C., Zhang, W.D., Chen, C.H., Zhang, J.Q. (2011) Carbon nanotubes-supported Pt-Au- alloy nanoparticles for electro-oxidation of formic acid with remarkable activity. Journal of Alloys and Compounds, 1029-1034; 509
Cabello, G., Davoglio, R.A., Hartl, F.W., Marco, J.F., Pereira, E.C., Biaggio, S.R., Varela, H., Cuesta, A. (2017) Microwave-Assisted Synthesis of Pt-Au Nanoparticles with Enhanced Electrocatalytic Activity for the Oxidation of Formic Acid. Electrochimica Acta, 224: 56-63
Casado-Rivera, E., Volpe, D.J., Alden, L., Lind, C., Downie, C., Vázquez-Alvarez, T., Angelo, A.C.D., di Salvo, F.J., Abruña, H.D. (2004) Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications. Journal of the American Chemical Society, 126(12): 4043-4049
Chen, G., Li, Y., Wang, D., Zheng, L., You, G., Zhong, C., Yang, L., Cai, F., Cai, J., Chen, B.H. (2011) Carbon-supported PtAu alloy nanoparticle catalysts for enhanced electrocatalytic oxidation of formic acid. Journal of Power Sources, 196(20): 8323-8330
Choi, J., Jeong, K., Dong, Y., Han, J., Lim, T., Lee, J., Sung, Y. (2006) Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells. Journal of Power Sources, 163(1): 71-75
Ferre-Vilaplana, A., Perales-Rondón, J.V., Feliu, J.M., Herrero, E. (2015) Understanding the Effect of the Adatoms in the Formic Acid Oxidation Mechanism on Pt(111) Electrodes. ACS Catalysis, 5(2): 645-654
Gilman, S. (1964) The Mechanism of Electrochemical Oxidation of Carbon Monoxide and Methanol on Platinum. II. The 'Reactant-Pair' Mechanism for Electrochemical Oxidation of Carbon Monoxide and Methanol 1. Journal of Physical Chemistry, 68(1): 70-80
Hamelin, A. (1996) Cyclic voltammetry at gold single-crystal surfaces. Part. Behavior at low-inex faces. J. Electroanal. Chem., 1-11; 407
Jiang, R., Tung, S.on, Tang, Z., Li, L., Ding, L., Xi, X., Liu, Y., Zhang, L., Zhang, J. (2018) A review of core-shell nanostructured electrocatalysts for oxygen reduction reaction. Energy Storage Materials, 12: 260-276
Krstajić, P.M.N., Stevanović, S.I., Radmilović, V.V., Gavrilović-Wohlmuther, A., Radmilović, V.R., Gojković, S.Lj., Jovanović, V.M. (2016) Shape evolution of carbon supported Pt nanoparticles: From synthesis to application. Applied Catalysis B: Environmental, 196: 174-184
Li, Y., Wu, S., Cui, X., Wang, L., Shi, X. (2012) Ultralow platinum-loading bimetallic nanoflowers: Fabrication and high-performance electrocatalytic activity towards the oxidation of formic acid. Electrochemistry Communications, 25: 19-22
López-Cudero, A., Vidal-Iglesias, F.J., Solla-Gullón, J., Herrero, E., Aldaz, A., Feliu, J.M. (2009) Formic acid electrooxidation on Bi-modified Pt(110) single crystal electrodes. Journal of Electroanalytical Chemistry, 637(1-2): 63-71
Ma, Y., Zhang, H., Zhong, H., Xu, T., Jin, H., Geng, X. (2010) High active PtAu/C catalyst with core-shell structure for oxygen reduction reaction. Catalysis Communications, 11(5): 434-437
Marković, N.M., Gasteiger, H.A., Ross, P.N., Jiang, X., Villegas, I., Weaver, M.J. (1995) Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces. Electrochimica Acta, 40(1): 91-98
Martı́nez-Rodrı́guez, R.A., Vidal-Iglesias, F.J., Solla-Gullón, J., Cabrera, C.R., Feliu, J.M. (2014) Synthesis of Pt Nanoparticles in Water-in-Oil Microemulsion: Effect of HCl on Their Surface Structure. Journal of the American Chemical Society, 136(4): 1280-1283
Matsumoto, F., Roychowdhury, C., di Salvo, F.J., Abruña, H.D. (2008) Electrocatalytic Activity of Ordered Intermetallic PtPb Nanoparticles Prepared by Borohydride Reduction toward Formic Acid Oxidation. Journal of The Electrochemical Society, 155(2): B148
Obradović, M.D., Rogan, J.R., Babić, B.M., Tripković, A.V., Gautam, A.R.S., Radmilović, V.R., Gojković, S.Lj. (2012) Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate. Journal of Power Sources, 197: 72-79
Obradović, M.D., Tripković, A.V., Gojković, S.Lj. (2009) The origin of high activity of Pt-Au surfaces in the formic acid oxidation. Electrochimica Acta, 55(1): 204-209
Park, I., Lee, K., Choi, J., Park, H., Sung, Y. (2007) Surface Structure of Pt-Modified Au Nanoparticles and Electrocatalytic Activity in Formic Acid Electro-Oxidation. Journal of Physical Chemistry C, 111(51): 19126-19133
Rhee, Y., Ha, S.Y., Masel, R.I. (2003) Crossover of formic acid through Nafion® membranes. Journal of Power Sources, 117(1-2): 35-38
Rice, C., Ha, S., Masel, R.I., Wieckowski, A. (2003) Catalysts for direct formic acid fuel cells. J. Power Sources, 229-235; 115
Urchaga, P., Baranton, S., Coutanceau, C., Jerkiewicz, G. (2012) Electro-oxidation of CO chem on Pt Nanosurfaces: Solution of the Peak Multiplicity Puzzle. Langmuir, 28(7): 3658-3663
Xu, J.B., Zhao, T.S., Liang, Z.X. (2008) Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells. Journal of Power Sources, 185(2): 857-861
Yu, X., Pickup, P.G. (2011) Carbon supported PtBi catalysts for direct formic acid fuel cells. Electrochimica Acta, 56(11): 4037-4043
Zheng, L., Xiong, L., Liu, Q., Han, K., Liu, W., Li, Y., Tao, K., Niu, L., Yang, S., Xia, J. (2011) Enhanced electrocatalytic activity for the oxidation of liquid fuels on PtSn nanoparticles. Electrochimica Acta, 56(27): 9860-9867
Zhu, Y., Ha, S.Y., Masel, R.I. (2004) High power density direct formic acid fuel cells. Journal of Power Sources, 130(1-2): 8-14