Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:4
članak: 1 od 3  
Back povratak na rezultate
Zaštita materijala
2018, vol. 59, br. 2, str. 293-306
jezik rada: engleski
vrsta rada: pregledni članak
objavljeno: 13/07/2018
doi: 10.5937/ZasMat1802293D
Creative Commons License 4.0
Biokompozitne prevlake hidroksiapatita ojačane grafenom, dobijene elektroforetskim taloženjem na titanu
aInstitut za tehnologiju nuklearnih i drugih mineralnih sirovina - ITNMS, Beograd
bUniverzitet u Beogradu, Tehnološko-metalurški fakultet
cKyung Hee University, Department of Mechanical engineering, Yongin, Republic of Korea
dUniverzitet u Beogradu, Tehnološko-metalurški fakultet + Kyung Hee University, Department of Mechanical engineering, Yongin, Republic of Korea

e-adresa: vesna@tmf.bg.ac.rs

Projekat

Sinteza, razvoj tehnologija dobijanja i primena nanostrukturnih multifunkcionalnih materijala definisanih svojstava (MPNTR - 45019)
This work was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (project No: 2016R1A2B4016034)

Sažetak

Brzi razvoj istraživanja nanomaterijala koji sadrže grafen otkrio je da se njihova izuzetna svojstva mogu koristiti za biomedicinske primene, posebno u inženjerstvu tkiva i kao nosači lekova. U ovom radu su prikazani rezultati istraživanja biokompozitnih prevlaka na bazi hidroksiapatita koje su dobijene elektroforetskim taloženjem na titanskom supstratu i ojačane nanočestičnim grafenom, kao potencijalnih kandidata za implante koštanog tkiva.

Ključne reči

Reference

Alves, C.D., Jansen, J.A., Leeuwenburgh, S.C. (2012) Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B(8): 2316-2326
Angelescu, N., Ungureanu, D.N., Anghelina, F.V. (2011) Synthesis and characterization of hydroxyapatite obtained in different experimental conditions. Sci. Bull. Valahia Univ. Mater. Mech, 6 (9), 15-18
Baradaran, S., Moghaddam, E., Basirun, W.J., Mehrali, M., Sookhakian, M., Hamdi, M., Moghaddam, M.R. N., Alias, Y. (2014) Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon, 69: 32-45
Barrere, F., van der Valk, C.M., Dalmeijer, R.A.J., van Blitterswijk, C.A., de Groot, K., Layrolle, P. (2003) In vitro andin vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. Journal of Biomedical Materials Research, 64A(2): 378-387
Batmanghelich, F., Ghorbani, M. (2013) Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosan-hydroxyapatite-carbon nanotube composite coatings. Ceramics International, 39(5): 5393-5402
Belmonte, M., Ramírez, C., González-Julián, J., Schneider, J., Miranzo, P., Osendi, M.I. (2013) The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon, 61: 431-435
Bustos-Ramírez, K., Martínez-Hernández, A., Martínez-Barrera, G., Icaza, M., Castaño, V., Velasco-Santos, C. (2013) Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction. Materials, 6(3): 911-926
Chavan, P.N., Bahir, M.M., Mene, R.U., Mahabole, M.P., Khairnar, R.S. (2010) Study of nanobiomaterial hydroxyapatite in simulated body fluid: Formation and growth of apatite. Materials Science and Engineering: B, 168(1-3): 224-230
Chavez-Valdez, A., Shaffer, M.S.P., Boccaccini, A.R. (2013) Applications of Graphene Electrophoretic Deposition. A Review. Journal of Physical Chemistry B, 117(6): 1502-1515
Cheong, M., Zhitomirsky, I. (2008) Electrodeposition of alginic acid and composite films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 328(1-3): 73-78
Djosic, M., Mitric, M., Mišković-Stanković, V.B. (2015) The porosity and roughness of electrodeposited calcium phosphate coatings in simulated body fluid. Journal of the Serbian Chemical Society, 80(2): 237-251
Djošić, M.S., Mišković-Stanković, V.B., Milonjić, S., Kačarević-Popović, Z.M., Bibić, N., Stojanović, J. (2008) Electrochemical synthesis and characterization of hydroxyapatite powders. Materials Chemistry and Physics, 111(1): 137-142
Djošić, M.S., Panić, V., Stojanović, J., Mitrić, M., Mišković-Stanković, V.B. (2012) The effect of applied current density on the surface morphology of deposited calcium phosphate coatings on titanium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 400: 36-43
Domínguez-Trujillo, C., Peón, E., Chicardi, E., Pérez, H., Rodríguez-Ortiz, J.A., Pavón, J.J., García-Couce, J., Galván, J.C., García-Moreno, F., Torres, Y. (2018) Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surface and Coatings Technology, 333: 158-162
Đošić, M., Eraković, S., Janković, A., Vukašinović-Sekulić, M., Matić, I.Z., Stojanović, J., Rhee, K.Y., Mišković-Stanković, V.B., Park, S. (2017) In vitro investigation of electrophoretically deposited bioactive hydroxyapatite/chitosan coatings reinforced by graphene. Journal of Industrial and Engineering Chemistry, 47: 336-347
Eftekhari, S., el Sawi, I., Bagheri, Z.S., Turcotte, G., Bougherara, H. (2014) Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications. Materials Science and Engineering: C, 39: 120-125
Erakovic, S., Veljovic, Đ., Diouf, P.N., Stevanovic, T., Mitric, M.N., Milonjic, S.K., Mišković-Stanković, V.B. (2009) Electrophoretic Deposition of Biocomposite Lignin/Hydroxyapatite Coatings on Titanium. International Journal of Chemical Reactor Engineering, 7, 1-14
Eraković, S., Janković, A., Ristoscu, C., Duta, L., Serban, N., Visan, A., Mihailescu, I.N., Stan, G.E., Socol, M., Iordache, O., Dumitrescu, I., Luculescu, C.R., Janaćković, Dj., Mišković-Stanković, V.B. (2014) Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates. Applied Surface Science, 293: 37-45
Eraković, S., Janković, A., Matić, I.Z., Juranić, Z.D., Vukašinović-Sekulić, M., Stevanović, T., Mišković-Stanković, V.B. (2013) Investigation of silver impact on hydroxyapatite/lignin coatings electrodeposited on titanium. Materials Chemistry and Physics, 142(2-3): 521-530
Eraković, S., Janković, A., Veljović, D., Palcevskis, E., Mitrić, M., Stevanović, T., Janaćković, D., Mišković-Stanković, V.B. (2013) Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition. Journal of Physical Chemistry B, 117(6): 1633-1643
Fan, Z., Wang, J., Wang, Z., Ran, H., Li, Y., Niu, L., Gong, P., Liu, B., Yang, S. (2014) One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon, 66: 407-416
Gebhardt, F., Seuss, S., Turhan, M.C., Hornberger, H., Virtanen, S., Boccaccini, A.R. (2012) Characterization of electrophoretic chitosan coatings on stainless steel. Materials Letters, 66(1): 302-304
Gu, Y.W., Khor, K.A., Cheang, P. (2004) Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials, 25(18): 4127-4134
Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Huang, Q., Fan, C. (2010) Graphene-Based Antibacterial Paper. ACS Nano, 4(7): 4317-4323
Janković, A., Eraković, S., Dindune, A., Veljović, Đ., Stevanović, T., Janaćković, Đ., Mišković-Stanković, V.B. (2012) Electrochemical impedance spectroscopy of a silver-doped hydroxyapatite coating in simulated body fluid used as a corrosive agent. Journal of the Serbian Chemical Society, vol. 77, br. 11, str. 1609-1623
Janković, A., Eraković, S., Mitrić, M., Matić, I.Z., Juranić, Z.D., Tsui, G.C.P., Tang, C., Mišković-Stanković, V.B., Rhee, K.Y., Park, S.J. (2015) Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. Journal of Alloys and Compounds, 624: 148-157
Janković, A., Eraković, S., Vukašinović-Sekulić, M., Mišković-Stanković, V.B., Park, S.J., Rhee, K.Y. (2015) Graphene-based antibacterial composite coatings electrodeposited on titanium for biomedical applications. Progress in Organic Coatings, 83: 1-10
Javidi, M., Javadpour, S., Bahrololoom, M.E., Ma, J. (2008) Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel. Materials Science and Engineering: C, 28(8): 1509-1515
Kalbacova, M., Broz, A., Kong, J., Kalbac, M. (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon, 48(15): 4323-4329
Lahiji, A., Sohrabi, A., Hungerford, D.S., Frondoza, C.G. (2000) Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. Journal of Biomedical Materials Research, 51(4): 586-595
Lee, I., Whang, C., Oh, K., Park, J., Lee, K., Lee, G., Chung, S., Sun, X. (2006) Formation of silver incorporated calcium phosphate film for medical applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 242(1-2): 45-47
Li, M., Liu, Q., Jia, Z., Xu, X., Shi, Y., Cheng, Y., Zheng, Y., Xi, T., Wei, S. (2013) Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings. Applied Surface Science, 284: 804-810
Li, M., Wang, Y., Liu, Q., Li, Q., Cheng, Y., Zheng, Y., Xi, T., Wei, S. (2013) In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J. Mater. Chem. B, 1(4): 475-484
Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H. (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochimica Acta, 55(12): 3909-3914
Lim, P.N., Chang, L., Thian, E.S. (2015) Development of nanosized silver-substituted apatite for biomedical applications: A review. Nanomedicine: Nanotechnology, Biology and Medicine, 11(6): 1331-1344
Liu, H., Xi, P., Xie, G., Shi, Y., Hou, F., Huang, L., Chen, F., Zeng, Z., Shao, C., Wang, J. (2012) Simultaneous Reduction and Surface Functionalization of Graphene Oxide for Hydroxyapatite Mineralization. Journal of Physical Chemistry C, 116(5): 3334-3341
Liu, Y., Huang, J., Li, H. (2013) Synthesis of hydroxyapatite-reduced graphite oxide nanocomposites for biomedical applications: Oriented nucleation and epitaxial growth of hydroxyapatite. J. Mater. Chem. B, 1, 1826-1834
Liu, Y., Dang, Z., Wang, Y., Huang, J., Li, H. (2014) Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties. Carbon, 67: 250-259
Mahmoodi, S., Sorkhi, L., Farrokhi-Rad, M., Shahrabi, T. (2013) Electrophoretic deposition of hydroxyapatite-chitosan nanocomposite coatings in different alcohols. Surface and Coatings Technology, 216: 106-114
Mavropoulos, E., Costa, A.M., Costa, L.T., Achete, C.A., Mello, A., Granjeiro, J.M., Rossi, A.M. (2011) Adsorption and bioactivity studies of albumin onto hydroxyapatite surface. Colloids and Surfaces B: Biointerfaces, 83(1): 1-9
McMahon, R.E., Wang, L., Skoracki, R., Mathur, A.B. (2012) Development of nanomaterials for bone repair and regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B(2): 387-397
Miskovic-Stankovic, V., Erakovic, S., Jankovic, A., Vukasinovic-Sekulic, M., Mitric, M., Jung, Y.C., Park, S.J., Rhee, K.Y. (2015) Electrochemical synthesis of nanosized hydroxyapatite/graphene composite powder. Carbon letters, 16(4): 233-240
Mišković-Stanković, V.B., Janković, A., Eraković, S., Yop, R.K. (2014) Graphene Based Biomedical Composite Coatings Produced by Electrophoretic Deposition on Titanium. Eurasian Chemico-Technological Journal, 17(1): 3
Mišković-Stanković, V.B. (2014) Electrophoretic Deposition of Ceramic Coatings on Metal Surfaces. New York, NY: Springer Nature, str. 133-216
Mostafa, N.Y. (2005) Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Materials Chemistry and Physics, 94(2-3): 333-341
Mourino, V., Cattalini, J.P., Boccaccini, A.R. (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. Journal of The Royal Society Interface, 9(68): 401-419
Neelgund, G.M., Oki, A., Luo, Z. (2013) In situ deposition of hydroxyapatite on graphene nanosheets. Materials Research Bulletin, 48(2): 175-179
Nikpour, M.R., Rabiee, S.M., Jahanshahi, M. (2012) Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Composites Part B: Engineering, 43(4): 1881-1886
Pang, X., Zhitomirsky, I. (2008) Electrodeposition of hydroxyapatite-silver-chitosan nanocomposite coatings. Surface and Coatings Technology, 202(16): 3815-3821
Pillai, R.S., Frasnelli, M., Sglavo, V.M. (2018) HA/ β -TCP plasma sprayed coatings on Ti substrate for biomedical applications. Ceramics International, 44(2): 1328-1333
Popescu-Pelin, G., Sima, F., Sima, L.E., Mihailescu, C.N., Luculescu, C., Iordache, I., Socol, M., Socol, G., Mihailescu, I.N. (2017) Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study. Applied Surface Science, 418: 580-588
Pramanik, N., Mishra, D., Banerjee, I., Maiti, T.K., Bhargava, P., Pramanik, P. (2009) Chemical Synthesis, Characterization, and Biocompatibility Study of Hydroxyapatite/Chitosan Phosphate Nanocomposite for Bone Tissue Engineering Applications. International Journal of Biomaterials, 2009: 1-8
Reyes-Gasga, J., Martínez-Piñeiro, E.L., Rodríguez-Álvarez, G., Tiznado-Orozco, G.E., García-García, R., Brès, E.F. (2013) XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite. Materials Science and Engineering: C, 33(8): 4568-4574
Roguska, A., Pisarek, M., Andrzejczuk, M., Dolata, M., Lewandowska, M., Janik-Czachor, M. (2011) Characterization of a calcium phosphate-TiO2 nanotube composite layer for biomedical applications. Materials Science and Engineering: C, 31(5): 906-914
Sanosh, K.P., Chu, M., Balakrishnan, A., Lee, Y., Kim, T.N., Cho, S. (2009) Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Current Applied Physics, 9(6): 1459-1462
Shemtov-Yona, K., Rittel, D. (2015) An Overview of the Mechanical Integrity of Dental Implants. BioMed Research International, 2015: 1-11
Simchi, A., Tamjid, E., Pishbin, F., Boccaccini, A.R. (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine: Nanotechnology, Biology and Medicine, 7(1): 22-39
Singh, K., Prasher, P., Kaur, K. (2017) Surface modification of dental implants. Indian J. Compr. Dent. Care., 10-14; 7
Sjogren, G., Sletten, G., Dahl, J.E. (2000) Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests. J Prosthet Dent, 84(2): 229-36
Stoch, A., Brożek, A., Kmita, G., Stoch, J., Jastrzębski, W., Rakowska, A. (2001) Electrophoretic coating of hydroxyapatite on titanium implants. Journal of Molecular Structure, 596(1-3): 191-200
Tanase, C.E., Popa, M.I., Verestiuc, L. (2009) Chitosan-Hydroxyapatite Composite Obtained by Biomimetic Method as New Bone Substitute. u: 2009 Advanced Technologies for Enhanced Quality of Life, Institute of Electrical and Electronics Engineers (IEEE), str. 42-46
Victoria, E.C., Gnanam, F.D. (2002) Synthesis and Characterisation of Biphasic Calcium Phosphate, Trends Biomater. Artif. Organs, 12-14; 16
Wang, L., Luo, J. (2011) Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method. Materials Science and Engineering: C, 31(4): 748-754
Watling, K.M., Parr, J.F., Rintoul, L., Brown, C.L., Sullivan, L.A. (2011) Raman, infrared and XPS study of bamboo phytoliths after chemical digestion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 80(1): 106-111
Wu, C., Huang, S., Tseng, T., Rao, Q., Lin, H. (2010) FT-IR and XRD investigations on sintered fluoridated hydroxyapatite composites. Journal of Molecular Structure, 979(1-3): 72-76
Ye, H., Liu, X.Y., Hong, H. (2009) Cladding of titanium/hydroxyapatite composites onto Ti6Al4V for load-bearing implant applications. Materials Science and Engineering: C, 29(6): 2036-2044
Zaharia, A., Muşat, V., Anghel, E.M., Atkinson, I., Mocioiu, O., Buşilă, M., Pleşcan, V.G. (2017) Biomimetic chitosan-hydroxyapatite hybrid biocoatings for enamel remineralization. Ceramics International, 43(14): 11390-11402
Zhang, L., Liu, W., Yue, C., Zhang, T., Li, P., Xing, Z., Chen, Y. (2013) A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon, 61: 105-115
Zhang, Q. (2003) Dissolution and mineralization behaviors of HA coatings. Biomaterials, 24(26): 4741-4748
Zhitomirsky, D., Roether, J.A., Boccaccini, A.R., Zhitomirsky, I. (2009) Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications. Journal of Materials Processing Technology, 209(4): 1853-1860