- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:5
- preuzimanja u poslednjih 30 dana:4
|
|
2021, vol. 49, br. 2, str. 308-314
|
Analiza aerodinamičke buke u ventilacionim kanalima sa umerivačima vazduha
A study of aerodynamic noise in air duct systems with turning vanes
aUniverzitet u Beogradu, Mašinski fakultet bThe Academy of Applied Technical Studies, Department Belgrade Polytechnic, Belgrade
e-adresa: mtrninc@politehnika.edu.rs
Sažetak
Buka je jedan od problema u mnogim industrijama. U ovom radu prikazana je analiza aerodinamički nastale buke koja se javlja pri strujanjima vazduha preko usmerivača vazduha oblika aeroprofila u vazdušnim kanalima. Na osnovu Proudmanove jednačine i Lajthilove akustične analogije širokopojasni nivo buke u vazdušnom kanalu može biti izračunat. Za modeliranje turbulentnog modela, k - e turbulentni model je korišćen a potrebne konstante su eksperimentalno određene merenjem u aerotunelu za podzvučne brzine, nakon kojih su vršena merenja buke za u neposrednoj blizini usmerivača vazduha oblika aeroprofila. Nekoliko rešenja je analizirano, kanal sa unutrašnjim aeroprofilom, kanal sa centralnim aeroprofilom, kanal sa spoljašnjim aeroprofilom kao i kombinacija prethodnih slučajeva. Analizom dobijenih rezultata, a u cilju ispunjavanja svih zakonskih propisa koji se tiču industrijske buke, koji postaju sve striktniji, akustična analiza i projektovanje moraju biti primenjeni u većini industrijskih sistema jer buka predstavlja opasnost po zdravlje radnika u radnom okruženju.
Abstract
Noise is becoming one of the problems in many industrial applications. In this paper the aerodynamic noise in air duct system that arises from air flow passing over a surface of turning vanes is investigated. Based on Proudman's formula using Lighthill's acoustic analogy broadband acoustic noise model can be predicted. To model the turbulent flow in an air duct k - e turbulent model is used and required constants are obtained experimentally in a low speed wind tunnel followed by noise measurement in the vicinity of deflected airfoil. Several designs are investigated: Inner airfoil in the duct elbow, center positioned air foil, outer positioned and the overall combination of all previous cases. It was found that in order to satisfy all noise requirements and regulation, which are becoming more strict nowadays, the acoustic analysis and design must be performed in most industrial systems since the noise levels arising from the operating industrial equipment may represent occupational and health hazard.
|
|
|
Reference
|
|
Brill, M.H., Eller, A.I. (1992) Computational comparison of broadband acoustic models. Journal of the Acoustical Society of America, 91(4): 2389-2389
|
|
Curle, N. (1955) The influence of solid boundaries upon aerodynamic sound. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 231(1187): 505-514
|
|
Drela, M., Huang, A., Darmofal, D. (2020) Screened expanding turning-vane concept. Experiments in Fluids, 61(3): 61-75
|
|
Gabard, G. (2014) Noise Sources for Duct Acoustics Simulations: Broadband Noise and Tones. AIAA Journal, 52(9): 1994-2006
|
5
|
Launder, B.E., Spalding, D.B. (1974) The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2): 269-289
|
|
Lighthill, M. (1952) On sound generated aerodynamically: General theory. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, I, 211(1107): 564-587
|
|
Lilly, D.K. (1992) A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A: Fluid Dynamics, 4(3): 633-635
|
|
Man, S., i dr. (2020) Broadband Acoustic Ventilation Barriers. Physical Review Applied, 13(4)
|
6
|
Matijević, D.V., Popović, V.M. (2017) Overview of modern contributions in vehicle noise and vibration refinement with special emphasis on diagnostics. FME Transactions, vol. 45, br. 3, str. 448-458
|
|
Moore, R., Boldman, D., Shyne, R., Gelder, T. (1987) Experimental Evaluation of Corner Vanes: Summary. SAE Transactions, Section 6: Aerospace, 6: 1013-1029
|
|
Moujaes, S.F., Aekula, S. (2009) CFD Predictions and Experimental Comparisons of Pressure Drop Effects of Turning Vanes in 90° Duct Elbows. Journal of Energy Engineering, 135(4): 119-126
|
1
|
Proudman, I. (1952) The generation of noise by isotropic turbulence. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 214(1116): 119-132
|
|
Sarkar, S., Hussaini, M.Y. (1994) Computation of the Sound Generated by Isotropic Turbulence. ICASE NASA Contractor Report, No: 93-74
|
|
Trninić, M., Dinulović, M., Rašuo, B. (2020) Analiza strujanja u vazdušnom kanalu sa usmerivačem vazduha oblika aeroprofila. Procesna tehnika, Vol. 32, No. 2, pp. 26-30, dec
|
|
|
|