- citati u SCIndeksu: 0
- citati u CrossRef-u:[1]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:5
- preuzimanja u poslednjih 30 dana:1
|
|
2014, vol. 55, br. 2, str. 127-132
|
Organoglina-polimerni nanokompoziti
Organoclay-polymer nanocomposites
aDepartment of Chemical Engineering, McMaster University, Hamilton, ON, Canada bCollege of Vocational Studies Belgrade Polytechnic, Belgrade cUniverzitet u Beogradu, Tehnički fakultet u Boru dUniverzitet u Beogradu, Tehnološko-metalurški fakultet
Sažetak
Svojstva polimernih nanokompozita prevazilaze svojstva uobičajenih kompozitnih materijala zbog nanodimenzija i morfologije upotrebljenih punioca. Čestični punioci se uglavnom koriste u cilju poboljšnja mehaničkih i toplotnih svojstava polimera, kao i za modifikovanje električnih svojstava polimerne matrice i smanjenja cene koštanja. Organski modifikovane slojevite gline, kao što je montmorilonit, su između ostalih, najzastupljeniji punioci u upotrebi za poboljšanje svojstava polimernih matrica. Ovim preglednim radom biće prikazani najznačajniji i najviše proučavani glina-polimerni nanokompoziti, kao što su glina-poliolefini, glina-poliestar i glina-termoplastični poliuretan nanokompoziti. Takođe, svojstva biopolimer-glina nanokompozita biće predstavljena i razmatrana u radu.
Abstract
The properties of polymer nanocomposites exceed the properties of common composite materials due to the nanoscale size and morphology of the fillers used. Particulate fillersare commonly used in polymers forimproved mechanical and thermal properties, as well as modified electrical properties and cost reduction. Organically modified layered clays, such asmontmorillonite, are among the most widely used fillers for the improvement of polymer matrices. Presented in this review are some of the most studied clay nanocomposites including clay-polyolefin, clay-polyester and clay-thermoplastic polyurethanenanocomposites. Additionally, the properties of clay-biopolymers nanocomposites will also be discussed.
|
|
|
Reference
|
|
*** (2002) Encyclopedia of Polymer Science and Technology. u: Mark H.F. [ur.] Encyclopedia of polymer science and technology, John Wiley & Sons
|
|
Ataeefard, M., Moradian, S. (2011) Polypropylene/Organoclay Nanocomposites: Effects of Clay Content on Properties. Polymer-Plastics Technology and Engineering, 50(7): 732-739
|
|
Baniasadi, H., Ramazani, S.A.A., Nikkhah, S. J. (2010) Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Materials and Design, 31(1): 76-84
|
|
Barick, A.K., Tripathy, D.K. (2011) Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites. Applied Clay Science, 52(3): 312-321
|
|
Barick, A.K., Tripathy, D.K. (2010) Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding. Materials Science and Engineering: A, 527(3): 812-823
|
|
Bordes, P., Hablot, E., Pollet, E., Avérous, L. (2009) Effect of clay organomodifiers on degradation of polyhydroxyalkanoates. Polymer Degradation and Stability, 94(5): 789-796
|
|
Botana, A., Mollo, M., Eisenberg, P., Sanchez, R.M. T. (2010) Effect of modified montmorillonite on biodegradable PHB nanocomposites. Applied Clay Science, 47(3-4): 263-270
|
|
Herrera-Alonso, J.M., Marand, E., Little, J.C., Cox, S.S. (2009) Transport properties in polyurethane/clay nanocomposites as barrier materials: Effect of processing conditions. Journal of Membrane Science, 337(1-2): 208-214
|
|
Hohenberger, W. (2001) Fillers and Reinforcements/Coupling Agents. Plast. Addit. Handb Hanser
|
|
Hu, H., Onyebueke, L., Abatan, A. (2010) Characterizing and modeling mechanical properties of nanocomposites: Review and evaluation. J Miner Mater Charact Eng, 9, pp. 275-319
|
|
Kotsilkova, R. (2007) Thermoset nanocomposites for engineering applications. Smithers Rapra
|
|
LeBaron, P. (1999) Polymer-layered silicate nanocomposites: an overview. Applied Clay Science, 15(1-2): 11-29
|
|
Litchfield, D.W., Baird, D.G. (2006) The rheology of high aspect ratio nano-particle filled liquids. Rheol Rev, pp. 1-60
|
|
Liu, P. (2007) Polymer modified clay minerals: A review. Applied Clay Science, 38(1-2): 64-76
|
|
Nielsen, L.E., Landel, R.F. (1994) Mechanical Properties of Polymers Composites. CRC Press, 2nd ed
|
1
|
Nikolaidis, A.K., Achilias, D.S., Karayannidis, G.P. (2011) Synthesis and Characterization of PMMA/Organomodified Montmorillonite Nanocomposites Prepared by in Situ Bulk Polymerization. Industrial and Engineering Chemistry Research, 50(2): 571-579
|
|
Olewnik, E., Garman, K., Czerwiński, W. (2010) Thermal properties of new composites based on nanoclay, polyethylene and polypropylene. Journal of Thermal Analysis and Calorimetry, 101(1): 323-329
|
|
Petrović, Z.S. (2005) Polyurethanes. u: Handb. Polym. Synth, Marcel Dekker
|
|
Pinnavaia, T.J., Beall, G.W. (2000) Polymer-Clay Nanocomposites. Wiley
|
|
Rybiński, P., Janowska, G., Jóźwiak, M., Pająk, A. (2012) Thermal stability and flammability of butadiene-styrene rubber nanocomposites. Journal of Thermal Analysis and Calorimetry, 109(2): 561-571
|
|
Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., Fu, S. (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 52(18): 4001-4010
|
|
Strankowski, M. (2012) Thermoplastic polyurethane/(organically modified montmorillonite) nanocomposites produced by in situ polymerization. Express Polymer Letters, 6(8): 610-619
|
|
Wang, L., Xie, X., Su, S., Feng, J., Wilkie, C.A. (2010) A comparison of the fire retardancy of poly(methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite. Polymer Degradation and Stability, 95(4): 572-578
|
|
|
|