Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:12
  • preuzimanja u poslednjih 30 dana:3
članak: 3 od 5  
Back povratak na rezultate
Serbian Journal of Electrical Engineering
2017, vol. 14, br. 1, str. 1-11
jezik rada: engleski
vrsta rada: neklasifikovan
objavljeno: 21/05/2017
doi: 10.2298/SJEE1701001M
Creative Commons License 4.0
Synergetic effect of additives on the hardness and adhesion of thin electrodeposited copper films
(naslov ne postoji na srpskom)
aUniverzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM
bUniverzitet u Beogradu, Tehnološko-metalurški fakultet

e-adresa: ivana@nanosys.ihtm.bg.ac.rs, jejal@nanosys.ihtm.bg.ac.rs, vjovic@nanosys.ihtm.bg.ac.rs, vesnar@tmf.bg.ac.rs

Projekat

Mikro, nano-sistemi i senzori za primenu u elektroprivredi, procesnoj industriji i zaštiti životne sredine (MPNTR - 32008)
Razvoj opreme i procesa dobijanja polimernih kompozitnih materijala sa unapred definisanim funkcionalnim svojstvima (MPNTR - 34011)
Sinteza, razvoj tehnologija dobijanja i primena nanostrukturnih multifunkcionalnih materijala definisanih svojstava (MPNTR - 45019)

Sažetak

(ne postoji na srpskom)
Thin copper films were electrodeposited on a polycrystalline cold rolled copper substrate. The composition of the laboratory-made copper sulphate electrolyte was changed by the addition of various additives. The influence of chloride ion (Cl-), polyethylene glycol (PEG) and 3-mercapto-1-propane sulfonic acid (MPSA) on mechanical and adhesion properties of the electrodeposited copper films was investigated using Vickers microindentation technique. Calculations of the film hardness and adhesion were carried out using composite hardness models of Korsunsky and Chen-Gao. The hardness of the composite system is influenced by the adhesion of the copper film to the substrate. Increasing adhesion corresponds to increasing values of the calculated adhesion parameter b, named the critical reduced depth. When additives are added to a plating solution, the copper deposition mechanism is changed and fine-grained microstructure without the formation of microscopic nodules is obtained.

Ključne reči

Reference

Beegan, D., Laugier, M.T. (2005) Application of composite hardness models to copper thin film hardness measurement. Surface and Coatings Technology, 199(1): 32-37
Chen, M., Gao, J. (2000) The adhesion of copper films coated on silicon and glass substrates. Modern Physics Letters B, 14(03): 103-108
Ebrahimi, F., Bourne, G., Kelly, M., Matthews, T. (1999) Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostructured Materials, 11(3): 343-350
He, J. L., Li, W. Z., Li, H. D. (1996) Hardness measurement of thin films: Separation from composite hardness. Applied Physics Letters, 69(10): 1402-1404
Hou, Q.R., Gao, J., Li, S.J. (1999) Adhesion and its influence on micro-hardness of DLC and SiC films. European Physical Journal B, 8(4): 493-496
Ibañez, A., Fatás, E. (2005) Mechanical and structural properties of electrodeposited copper and their relation with the electrodeposition parameters. Surface and Coatings Technology, 191(1): 7-16
Khlifi, K., Larbi, A.B.C. (2014) Mechanical properties and adhesion of TiN monolayer and TiN/TiAlN nanolayer coatings. Journal of Adhesion Science and Technology, 28(1): 85-96
Korsunsky, A.M., McGurk, M.R., Bull, S.J., Page, T.F. (1998) On the hardness of coated systems. Surface and Coatings Technology, 99(1-2): 171-183
Lamovec, J., Jović, V., Mladenović, I., Sarajlić, M., Radojević, V. (2013) Micromechanical Properties of Composite Systems obtained with Electrodeposition of Thin Ni and Cu Films on Different Substrates. u: 57th ETRAN Conference, 03-06 June 2013, pp. MO3.3.1 - 6. (In Serbian)
Li, H., Bradt, R.C. (1992) The indentation load/size effect and the measurement of the hardness of vitreous silica. Journal of Non-Crystalline Solids, 146: 197-212
Maciossek, A., Lo¨chel, B., Quenzer, H.-J., Wagner, B., Schulze, S., Noetzel, J. (1995) Galvanoplating and sacrificial layers for surface micromachining. Microelectronic Engineering, 27(1-4): 503-508
Magagnin, L., Maboudian, R., Carraro, C. (2003) Adhesion evaluation of immersion plating copper films on silicon by microindentation measurements. Thin Solid Films, 434(1-2): 100-105
Qingrun, H., Gao, J. (1997) Micro-Hardness and Adhesion of Diamond-Like Carbon Films. Modern Physics Letters B, 11(16n17): 757-764
Raygani, A., Magagnin, L. (2012) Gold Metallization on Silicon by Galvanic Displacement. Electrochemical Society Transactions, Vol. 41, No. 35, pp. 3-8
Teh, W., Koh, L., Chen, S., Xie, J., Li, C., Foo, P. (2001) Study of microstructure and resistivity evolution for electroplated copper films at near-room temperature. Microelectronics Journal, 32(7): 579-585
Tuck, J., Korsunsky, A., Davidson, R., Bull, S., Elliott, D. (2000) Modelling of the hardness of electroplated nickel coatings on copper substrates. Surface and Coatings Technology, 127(1): 1-8
Zhang, B., Kou, Y., Xia, Y.Y., Zhang, X. (2015) Modulation of strength and plasticity of multiscale Ni/Cu laminated composites. Materials Science and Engineering: A, 636: 216-220