Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 2 od 5  
Back povratak na rezultate
2017, vol. 21, br. 1, str. 1-15
Cebyšev’s type inequalities for positive linear maps of selfadjoint operators in Hilbert spaces
(naslov ne postoji na srpskom)
Mathematics, College of Engineering & Science Victoria University, Melbourne City, MC, Australia + School of Computer Science & Applied Mathematics University of the Witwatersrand, Johannesburg, South Africa

e-adresasever.dragomir@vu.edu.au
Ključne reči: positive linear maps; selfadjoint operators; synchronous(asynchronous) functions; monotonic functions; Cebyšev inequality; functions of selfadjoint operators
Sažetak
(ne postoji na srpskom)
Some inequalities for positive linear maps of continuous synchronous (asynchronous) functions of selfadjoint linear operators in Hilbert spaces, under suitable assumptions for the involved operators, are given. Applications for power function and logarithm are provided as well.
Reference
Biernacki, M. (1951) Sur une inégalité entre les intégrales due à Tchebyscheff. Ann. Univ. Mariae Curie-Sklodowska (Poland), 23-29, A5
Boukerrioua, K., Guezane-Lakoud, A. (2007) On generalization of Cebyšev type inequalities. J. Inequal. Pure Appl. Math, no. 2, Article 55, 4 pp
Choi, M.D. (1972) Positive linear maps on $Csp{ast} $-algebras. Journal canadien de mathématiques, 24(0): 520-529
Čebyšev, P.L. (1948) O približennyh vyraženijah odnih integralov čerez drugie. Soobšcenija i protokoly zasedaniı Matemmatičeskogo obcestva pri Imperatorskom Har’kovskom Universitete, No. 2, 93-98; Polnoe sobranie socineniı P.L. Čebyševa. Moskva-Leningrad, (1882), 128-131
Čebyšev, P.L. (1948) Ob odnom rjade, dostavljajušcem predel’nye veliciny integralov pri razloženii podintegral’noı funkcii na množeteli. Zapisok Imp. Akad. Nauk, Priloženi k 57 tomu, No. 4; Polnoe sobranie socineniı P. L. Čebyševa. Moskva-Leningrad, (1883),157-169
Dragomir, S.S. (1993) Some improvement of Čebyšev's inequality for isotonic functionals. Atti. Sem. Mat. Fis. Univ. Modena (Italy), 473-481; 41
Dragomir, S.S. (1990) On some improvements of Čebyšev's inequality for sequences and integrals. Studia Univ. Babes-Bolyai, Mathematica, Romania, XXXV, (4), 35-40
Dragomir, S.S. (2004) On the Čebyšev's inequality for weighted means. Acta Mathematica Hungarica, 104(4): 345-355
Dragomir, S.S., Mond, B. (1993/94) Some mappings associated with Čebyšev's inequality for sequences of real numbers. Bull. Allahabad Math. Soc., 8/9 , 37-55
Dragomir, S.S., Pečarić, J.E. (1989) Refinements of some inequalities for isotonic linear functionals. L'Anal. Num. Théor de L'Approx, 61-65; (1): 18
Dragomir, S.S., Sándor, J. (1988) The Chebyshev inequality in pre-Hilbertian spaces. u: The Second Symposium of Mathematics and its Applications (Timisoara, 1987), Res. Centre, Acad. SR Romania, Proceedings of, Timisoara, I, MR1006000 (90k:46048)
Dragomir, S.S., Pečarić, J., Sándor, J. (1990) The Chebyshev inequality in pre-Hilbertian spaces. u: The Third Symposium of Mathematics and its Applications (Timisoara, 1989), Rom. Acad. Proceedings of, Timisoara, II, 75-78, MR1266442 (94m:46033)
Dragomir, S.S. (2009) Inequalities for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces. Aust. J. Math. Anal. Appl, 6, no. 1, Art. 7, 58 pp
Dragomir, S.S. (2010) Čebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces. Linear and Multilinear Algebra, 58(7): 805-814
Dragomir, S.S. (2012) Operator Inequalities of the Jensen, Cebyšev and Grüss Type. New York: Springer Briefs in Mathematics. Springer, +121 pp. 978
Dragomir, S.S. (2016) A weakened version of Davis-Choi-Jensen’s inequality for normalised positive linear maps. RGMIA Res. Rep. Coll, Preprint, 19, Art. 61, http://rgmia.org/papers/v19/v19a61.pdf
Hardy, G.H., Littlewood, J.E., Polya, G. (1952) Inequalities. Cambridge, itd: Cambridge University Press
Matković, A., Pečarić, J., Perić, I. (2006) A variant of Jensen's inequality of Mercer's type for operators with applications. Linear Algebra and its Applications, 418(2-3): 551-564
Mitrinović, D.S., Pečarić, H.J.E. (1990) variations and generalizations of the Cebyšev inequality and question of some priorities. II. Rad Jugoslav. Akad. Znan. Umjet, No. 450, 139-156
Mitrinović, D.S., Vasić, P.M. (1974) History, variations and generalisations of the Cebyšev inequality and the question of some priorities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz, No. 461-497, 1-30
Mitrinović, D.S., Pečarić, J.E., Fink, A.M. (1993) Classical and new inequalities in analysis. Dordrecht, itd: Kluwer Academic Publisher
Mitrinović, D.S., Pečarić, J.E. (1991) On an identity of D.Z. Đoković. Prilozi Mak. Akad. Nauk. Umj, Skopje, 12(1), 21-22
Mond, B., Pečarić, J. (1993) Convex inequalities in Hilbert spaces. Houston J. Math., 405-420; 19
Mond, B., Pečarić, J. (1994) Classical inequalities for matrix functions. Utilitas Math., 155-166; 46
Moradi, H.R., Omidvar, M.E., Dragomir, S.S. (2016) An operator extension of Čebyšev inequality. RGMIA Res. Rep. Coll, Preprint, 19, Art. 81, http//rgmia.org/papers/v19/v19a81.pdf
Pachpatte, B.G. (2007) New Čebyšev type inequalities involving functions of two and three variables. Soochow J. Math, 33, no. 4, 569-577
Pachpatte, B.G. (2007) A note on Čebyšev type inequalities. An. Stiinµ. Univ. Al. I. Cuza Iasi. Mat, Romania, 53, no. 1, 97-102
Pečarić, J. (1993) Remarks on Biernacki's generalization of Čebyšev's inequality. Ann. Univ. Mariae Curie-Sklodowska Sect. A, 116-122; 47
Pečarić, J., Furuta, T., Mićić, H.J., Seo, Y. (2005) Mond-Pečarić method in operator inequalities: Inequalities for bounded selfadjoint operators on a Hilbert space. Zagreb: Element
Pečarić, J., Mićić, J., Inequalities, S.Y. (2004) between operator means based on the Mond-Pečarič method. Houston J. Math, 30, no. 1, 191-207
Pečarić, J., Dragomir, S.S. (1990) Some remarks on Čebyšev's inequality. L'Anal. Num. Théor de L'Approx, 19 (1): 58-65
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/MatMor1701001S
objavljen u SCIndeksu: 13.11.2017.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka