Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 1 od 1  
Back povratak na rezultate
2015, vol. 19, br. 1, str. 81-85
On the theorem of wan for K-quasiconformal hyperbolic harmonic self mappings of the unit disk
(naslov ne postoji na srpskom)
Univerzitet u Beogradu, Matematički fakultet

e-adresakmiljan@matf.bg.ac.rs
Ključne reči: hyperbolic metric; harmonic mappings; quasiconformal mappings
Sažetak
(ne postoji na srpskom)
We give a new glance to the theorem of Wan (Theorem 1.1) which is related to the hyperbolic bi-Lipschicity of the K-quasiconformal, K ≥ 1, hyperbolic harmonic mappings of the unit disk D onto itself. Especially, if f is such a mapping and f(0) = 0, we obtained that the following double inequality is valid 2│z│=(K + 1) ≤ │f(z)│ ≤ √ K│z│, whenever z _ D.
Reference
Ahlfors, L. (1966) Lectures on quasiconformal mappings. u: Van Nostrand Mathematical Studies, D. Van Nostrand
Ahlfors, L. (1973) Conformal invariants. McGraw-Hill Book Company
Kneževic, M. (2014) Kvazikonformna i harmonijska preslikavanja, kvazi-izometrije i krivina. Beograd: Univerzitet u Beogradu-Matematicki fakultet, Doktorska disertacija
Knežević, M., Mateljević, M. (2007) On the quasi-isometries of harmonic quasiconformal mappings. Journal of Mathematical Analysis and Applications, 334(1): 404-413
Knežević, M. (2013) Some Properties of Harmonic Quasi-Conformal Mappings. u: Dobrev, Vladimir [ur.] Lie Theory and Its Applications in Physics, Tokyo: Springer Nature America, Inc, str. 531-539
Lehto, O., Virtanen, K.I. (1973) Quasiconformal Mappings in the Plane. Berlin, Heidelberg: Springer Nature America, Inc
Mateljevic, M. (2012) Topics in conformal, quasiconformal and harmonic maps. Beograd: Zavod za udžbenike, ISBN 978-86-17-17961-6
Mateljević, M. (1992) Note on Schwarz lemma, curvature and distance. Zbornik radova Prirodno-matematičkog fakulteta u Kragujevcu, 13, 25-29
Mateljević, M. (2012) Quasiconformality of harmonic mappings between Jordan domains. Filomat, vol. 26, br. 3, str. 479-510
Pavlovic, M. (2002) Boundary correspondence under harmonic quasi-conformal homeomorfisms of the unit disk. Ann. Acad. Sci. Fenn. Math, 27, pp. 365-372
Rudin, W. (1966) Real and complex analysis. McGraw-Hill
Wan, T.Y. (1992) Constant mean curvature surface, harmonic maps, and universal Teichmüller space. Journal of Differential Geometry, 35(3): 643-657
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/MatMor1501081K
objavljen u SCIndeksu: 25.03.2017.

Povezani članci

Nema povezanih članaka