- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:5
- preuzimanja u poslednjih 30 dana:4
|
|
2016, vol. 57, br. 1, str. 110-118
|
Uticaj rastvora kiselina na raspodelu deformacija kod staklo-poliestar kompozitnih cevi istaloženih dejstvu unutrašnjeg pritiska
Influence of acidic solutions on the strain distribution in glasspolyester composite pipes subjected to internal pressure
aVojnotehnički institut - VTI, Beograd bUniverzitet u Beogradu, Tehnološko-metalurški fakultet cBelgrade Polytechnic, Belgrade
e-adresa: slavisa@tmf.bg.ac.rs
Projekat: Proučavanje sinteze, strukture i aktivnosti organskih jedinjenja prirodnog i sintetskog porekla (MPNTR - 172013) Mikromehanički kriterijumi oštećenja i loma (MPNTR - 174004)
Ključne reči: staklo-poliestar kompozit; unutrašnji pritisak; uticaj rastvora; vlaknima ojačane cevi
Keywords: glass-polyester composite; internal pressure; influence of solution; fiber reinforced pipes
Sažetak
Cilj ovog rada je određivanje raspodele deformacija kod staklo-poliestar kompozitnih cevi koje su istaložene dejstvu unutrašnjeg pritiska. Prethodno su izvršena ispitivanja na netretiranim cevima u cilju određivanja originalnih svojstava. Zatim su cevi tretirane 25%-im rastvorom kiselina. Upotrebljene su fosforna i azotna kiselina zbog njihove česte upotrebe u hemijskoj industriji. Cevi su izrađene metodom namotavanja ('filament winding'), pri čemu su uglovi namotavanja staklenih vlakana [90 ]2[±55°]4[90°]4. Vrednosti deformacija usled delovanja unutrašnjeg pritiska su registrovane mernim trakama postavljenim u tri pravca: 0°, 90° i ± 45° u odnosu na osu cevi. Ispitivanja su izvođena do pojave procurivanja pri vrednosti pritiska od 100 bar, tj. do pojave prvih prslina. Prikazana je i mikromehanička analiza izvedena na prelomnim površinama pomoću skenirajućeg elektronskog mikroskopa (SEM) čime su dobijena saznanja o modelima i mehanizmima loma usled dejstva primenjenog opterećenja.
Abstract
The basic subject of this paper was the determination of the strain distribution in glass-polyester composite pipes subjected to internal pressure. Firstly, the test was performed on virgin pipe segments (without the influence of acidic solution) to determine the original properties of the examined composite pipes. Subsequently, the pipes were subjected to the influence of 25% acidic solution. Phosphoric and nitric acid were chosen, because of their frequent use in chemical industry, either as reactants or as products. The pipes were made by 'filament winding' method, with the angles of the glass fibers reinforcement [90°]2[±55°]4[90°]4. The tests were performed by subjecting the polymer composite pipes to internal pressure; the strain values were determined by strain gages in three directions: 0°, 90° and ± 45° with respect to the pipe axis. The tests were performed until the leakage occurred, up to the pressure value of approximately 100 bar, i.e. until the occurrence of the first cracks. Also, the micromechanical analysis on fracture surfaces was done by Scanning Electron Microscopy (SEM), which provided the knowledge about models and mechanisms of fracture due to the applied loading.
|
|
|
Reference
|
|
*** (2001) SRPS ISO Standard 1167: Thermoplastics pipes for the conveyance of fluids: Resistance to internal pressure: Test method
|
|
*** ASTM D3039 / D3039M - 14: Standard test method for tensile properties of polymer matrix composite materials
|
2
|
Flueler, P., Farshad, M. (1995) Arrest of rapid crack propagation in polymer pipes. Materials and Structures, 28(2): 108
|
1
|
Guan, Z.W., Boot, J.C. (2001) Creep analysis of polymeric pipes under internal pressure. Polym Eng Sci, 41(6); 955-961
|
|
Hammami, A., Al-Ghuilani, N. (2004) Durability and environmental degradation of glass-vinylester composites. Polymer Composites, 25(6): 609-616
|
1
|
Mahmoud, M.K., Tantawi, S.H. (2003) Effect of strong acids on mechanical properties of glass/polyester GRP pipe at normal and high temperatures. Polymer-Plastics Technology and Engineering, 42(4), 677-688
|
|
Mouallif, I., Latrach, A., Chergui, M., Benali, A., Elghorba, M., Mouallif, Z., Hangouet, J.-P., Barbe, N. (2013) Degradation of dynamic mechanical properties of glass fiber reinforced polyester composite pipes after immersion in various temperatures. Journal of Composite Materials, 48(24): 3025-3034
|
1
|
Sindhu, K., Joseph, K., Joseph, J.M., Mathew, T.V. (2007) Degradation studies of coir fiber/polyester and glass fiber/polyester composites under different conditions. Journal of Reinforced Plastics and Composites, 26(15), 1571-1585
|
|
Stamenović, M., Putić, S., Rakin, M., Medjo, B., Čikara, D. (2011) Effect of alkaline and acidic solutions on the tensile properties of glass-polyester pipes. Materials & Design, 32(4): 2456-2461
|
|
Stamenović, M., Putić, S., Medjo, B., Rakin, M., Zrilić, M. (2012) Effect of solution pH on crack initiation and propagation in glass-polyester pipes subjected to impact. Polymer Composites, 33(8): 1321-1328
|
|
|
|