Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:2
članak: 4 od 6  
Back povratak na rezultate
Pesticidi i fitomedicina
2018, vol. 33, br. 1, str. 27-37
jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljeno: 11/05/2018
doi: 10.2298/PIF1801027R
Creative Commons License 4.0
Optimizacija sastava hranljive podloge za proizvodnju bioaktivnih jedinjenja koja deluju protiv Penicillium sp.
Univerzitet u Novom Sadu, Tehnološki fakultet

e-adresa: paj@tf.uns.ac.rs

Sažetak

Biološka kontrola predstavlja jednu od najpogodnijih alternativa kojom se eliminišu nedostaci primene pesticida u kontroli biljnih bolesti. U ovom istraživanju izvršena je optimizacija sastava hranljive podloge za proizvodnju bioaktivnih komponenti od strane Bacillus subtilis ATCC 6633. Proizvedene bioaktivne komponente su testirane protiv fitopatogenog izolata Penicillium sp., poznatog po izazivanju bolesti različitih poljoprivrednih proizvoda i uzrokovanju značajnih gubitaka u prinosu useva. Ispitivanje antimikrobne aktivnosti je izvedeno primenom disk-difuzionog metoda, pri čemu su mereni prečnici zona inhibicije, kao direktni pokazatelji antifungalne aktivnosti. Metodologija odzivne površine je primenjena za procenu uticaja inicijalnih sadržaja nutrijenata (glicerola, NaNO2 i K2HPO4) u hranljivoj podlozi na prečnik dobijenih zona inhibicije. Optimizacija sastava hranljive podloge je izvršena primenom metoda željene funkcije, sa ciljem maksimizacije prinosa bioaktivnih komponenti i minimizacije rezidualnog sadržaja nutrijenata. Optimizovane koncentracije odabranih nutrijenata u hranljivoj podlozi za proizvodnju bioaktivnih komponenti bile su: glicerol 20 g/l, NaNO2 1 g/l i K2HPO4 15 g/l.

Ključne reči

Reference

Bauer, A.W., Kirby, W.M.M., Sherris, J.C., Turck, M. (1966) Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology, 45(4_ts): 493-496
Carvalho, A.L.U.de, Oliveira, F.H.P.C.de, Mariano, R.de L.R., Gouveia, E.R., Souto-Maior, A.M. (2010) Growth, sporulation and production of bioactive compounds by Bacillus subtilis R14. Brazilian Archives of Biology and Technology, 53(3): 643-652
Cheng, S.W., Wang, Y.F., Liu, F.F. (2011) Optimization of medium compositions using statistical experimental design to produce lipase by Bacillus subtilis. Chemical and Biochemical Engineering Quarterly, 25(3), 377-383
de Faria, A.F., Teodoro-Martinez, D.S., de Oliveira, B.G.N., Gontijo, V.B., Serrano, S.Í., Garcia, J.S., Tótola, M.R., Eberlin, M.N., Grossman, M., Alves, O.L., Regina (2011) Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochemistry, 46(10): 1951-1957
Droby, S., Wisniewski, M., Macarisin, D., Wilson, C. (2009) Twenty years of postharvest biocontrol research: Is it time for a new paradigm?. Postharvest Biology and Technology, 52(2): 137-145
El-Banna, N.M. (2005) Effect of Carbon Source on the Antimicrobial Activity of the Air Flora. World Journal of Microbiology and Biotechnology, 21(8-9): 1451-1454
El-Banna, N.M., Quddoumi, S.S. (2007) Effect of nitrogen source on the antimicrobial activity of the bacilli air flora. Annals of Microbiology, 57(4): 669-671
Fatih, K., Üsame, T.A., Oskay, M. (2005) Determination of Fungi Associated with Tomatoes (Lycopersicum esculentum M.) and Tomato Pastes. Plant Pathology Journal, 4(2): 146-149
Gales, M.E., Julian, E.C., Kroner, R.C. (1966) Method for Quantitative Determination of Total Phosphorus in Water. Journal - American Water Works Association, 58(10): 1363-1368
Gisi, U., Chet, I., Lodovica, G.M., ur. (2009) Recent developments in management of plant diseases. New York, USA: Springer Science & Business Media
Grahovac, M., Inđić, D., Lazić, S., Vuković, S. (2009) Biofungicides and their applicability in modern agricultural practice. Pesticidi i fitomedicina, vol. 24, br. 4, str. 245-258
Herlich, K., ur. (1990) Official methods of analysis of the association of official analytical chemists. Arlington: AOAC
Ibrahim, H.M., Elkhidir, E.E. (2011) Response Surface Method as an Efficient Tool for Medium Optimisation. Trends in Applied Sciences Research, 6(2): 121-129
Janisiewicz, W.J., Korsten, L. (2002) Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40(1): 411-441
Joshi, S., Bharucha, C., Desai, A.J. (2008) Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresource Technology, 99(11): 4603-4608
Khosro, I. (2012) Antagonism of Bacillus species against Xanthomonas campestris pv. campestris and Pectobacterium carotovorum subsp. carotovorum. African Journal of Microbiology Research, 6(7): 1615-1620
Li, C., Lesnik, K., Liu, H. (2013) Microbial Conversion of Waste Glycerol from Biodiesel Production into Value-Added Products. Energies, 6(9): 4739-4768
Managamuri, U., Vijayalakshmi, M., Poda, S., Ganduri, V.K., Babu, R. (2016) Optimization of culture conditions by response surface methodology and unstructured kinetic modeling for bioactive metabolite production by Nocardiopsis litoralis VSM-8. 3 Biotech, 6(2):
Mari, M., Leoni, O., Iori, R., Cembali, T. (2002) Antifungal vapour-phase activity of allyl-isothiocyanate against Penicillium expansum on pears. Plant Pathology, 51(2): 231-236
Martin, J.F., Demain, A.L. (1980) Control of antibiotic biosynthesis. Microbiological Reviews, 44(2); 230-251
Mnif, I., Chaabouni-Ellouze, S., Ghribi, D. (2012) Optimization of the Nutritional Parameters for Enhanced Production of B. subtilis SPB1 Biosurfactant in Submerged Culture Using Response Surface Methodology. Biotechnology Research International, 2012: 1-8
Nunes, C.A., Manso, T., Lima-Costa, M.E. (2009) Postharvest biological control of citrus fruit. Tree and Forestry Science and Biotechnology, 3(2), 116-126
Quaglia, M., Ederli, L., Pasqualini, S., Zazzerini, A. (2011) Biological control agents and chemical inducers of resistance for postharvest control of Penicillium expansum Link. on apple fruit. Postharvest Biology and Technology, 59(3): 307-315
Rončević, Z.Z., Grahovac, J.A., Vučurović, D.G., Dodić, S.N., Bajić, B.Ž., Tadijan, I.Ž., Dodić, J.M. (2014) Optimization of medium composition for the production of compounds effective against Xanthomonas campestris by Bacillus subtilis. Acta periodica technologica, br. 45, str. 247-258
Sanchez, S., Demain, A.L. (2002) Metabolic regulation of fermentation processes. Enzyme and Microbial Technology, 31(7): 895-906
Sharma, R.R., Singh, D., Singh, R. (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3): 205-221
Sousa, M.de, Dantas, I.T., Felix, A.K.N., Sant'Ana, H.B.de, Melo, V.M.M., Gonçalves, L.R.B. (2014) Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633. Brazilian Archives of Biology and Technology, 57(2): 295-301
Spadaro, D., Gullino, M.L. (2004) State of the art and future prospects of the biological control of postharvest fruit diseases. International Journal of Food Microbiology, 91(2): 185-194
Yang, F., Hanna, M.A., Sun, R. (2012) Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnology for Biofuels, 5(1): 13