- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:0
- preuzimanja u poslednjih 30 dana:0
|
|
2012, vol. 62, br. 4, str. 385-401
|
Metabolizam biogenih amina u akutnoj ishemiji mozga - uticaj sistemske hiperglikemije
Metabolism of biogenic amines in acute cerebral ischemia: Influence of systemic hyperglycemia
aUniverzitet u Beogradu, Medicinski fakultet, Institut za medicinu rada i radiološku zaštitu 'Dr Dragomir Karajović' bKlinički centar Srbije, Beograd cUniverzitet u Beogradu, Medicinski fakultet, Institut za rehabilitaciju 'Dr M. Zotović' dHigh Health School of Professional Studies, Belgrade
e-adresa: milalex@eunet.rs
Sažetak
Efekat ishemije na parenhim mozga zavisi od mnogih faktora, kao što su mehanizam nastalog prekida protoka krvi, brzina nastalog prekida protoka krvi, dužina trajanja ishemične epizode, organizacija anatomskih struktura krvnih sudova mozga itd., što sve utiče na krajnji ishod. Dopamin, noradrenalin i serotonin su biogenic amini koji se ubrajaju u transmitere centralnog nervnog sistema. Pri prekidu moždane cirkulacije u eksperimentalnim ili kliničkim uslovima metabolizam neurotransmitera, u prvom redu biogenih amina, je poremećen. Mnoga istraživanja na raznim eksperimentalnim modelima kompletne ishemije ukazuju na smanjenje sadržaja noradrenalina, dopamina i serotonina u centralnim nervnim tkivima. Dokazano je da hiperglikemija može drastično da poveća cerebralno oštećenje praćeno kratkotrajnom cerebralnom ishemijom. Imajući u vidu činjenicu da biogeni amini (dopamin, noradrenalin i serotonin) neposredno učestvuju u određivanju veličine neurološkog oštećenja i činjenicu da je u stanjima hiperglikemije veličina infarkta (sa morfološkog aspekta) veća u odnosu na normoglikemičnu situaciju, hteli smo da proverimo kolika je uloga biogenih amina u nastajanju oštećenja u stanjima hiperglikemije, odnosno u situacijama pojave apopleksije mozga u dijabetičara. Analizom metabolizma biogenih amina u stanjima akutne i hronične hiperglikemije i efekat reberzibilne i ireverzibilne ishemije mozga na metabolizam serotonina, dopamina i noradrenalina, ustanovljeno je da akutna hipeglikemija usporava metabolizam serotinana, dopamina i noradrenalina u kori mozga i n. caudatus-u. Ishemija mozga u normoglikemičnih životinja po sebi je bez uticaja na metabolizam biogenih amina, ali se efekat ishemije ispoljava u toku recirkulacije. U recirkulaciji, što odgovara događajima u penumbri, oslobađanje biogenih amina je nekontrolisano i pojačano. Ishemija mozga u akutno-hipeglikemičnih životinja povećava oslobađanje biogenih amina nezavisno od dužine trajanja ishemije (5 ili 15 minuta). Ovaj efekat je još više izražen tokom recirkulacije. Akutna hiperglikemija čini moždano tkivo osetljivim već na ishemiju kraćeg trajanja - reverzibilnu ishemiju.
Abstract
Dopamine, norepinephrine and serotonin are biogenic amines which are transmitters of the central nervous system. The effects of ischemia on the brain parenchyma depends on many factors, such is the mechanism of blood flow interruption, velocity of the occurring blood flow interruption, duration of an ischemic episode, organization of anatomical structures of the brain blood vessels etc., which all influence the final outcome. During interruption of the brain circulation in experimental or clinical conditions, neurotransmitter metabolism, primarily of biogenic amines, is disturbed. Many researches with various experimental models of complete ischemia reported a decrease in the content of norepinephrine, dopamine and serotonin in the CNS tissue. It was proven that hyperglycemia can drastically increase cerebral injury followed by short-term cerebral ischemia. Considering the fact that biogenic amines (dopamine, norepinephrine and serotonin) influence the size of neurologic damage, as well as the fact that in hyperglycemic conditions infarct size (from the morphological aspect) is larger relative to normoglycemic status, the intention was to evaluate the role of biogenic amines in occurrence of damage in conditions of hyperglycemia, i.e. in the case of brain apoplexia in diabetics. Analysis of biogenic amines metabolism in states of acute hyperglycemia, as well as analysis of the effects of reversible and irreversible brain ischemia on metabolism of serotonin, dopamine and norepinephrine, showed that acute hyperglycemia slows down serotonin, dopamine and norepinephrine metabolism in the cerebral cortex and n. caudatus. Brain ischemia in normoglycemic animals by itself has no influence on biogenic amines metabolism, but the effect of ischemia becomes apparent during reperfusion. In recirculation, which corresponds to the occurrences in penumbra, release of biogenic amines is uncontrolled and increased. Brain ischemia in acute hyperglycemic animals increases the release of biogenic amines regardless of ischemia duration (5 or 15 minutes). This effect is more apparent during recirculation. Acute hyperglycemia makes brain tissue more sensitive even to ischemia which last shorter, i.e. reversible ischemia.
|
|
|
Reference
|
|
Combs, D.J., Dempsey, R.J., Kumar, S., Donaldson, D. (1990) Focal cerebral infarction in cats in the presence of hyperglycemia and increased insulin. Metabolic brain disease, 5(4): 169-78
|
|
Cvejić, V., Mićić, D.V., Djuričić, B.M., Mršulja, B.J., Mršulja, B.B. (1980) Monoamines and related enzymes in cerebral cortex and basal ganglia following transient ischemia in gerbils. Acta neuropathol (Berl.), 51, 71
|
|
Cvejić, V., Mićić, D.V., Mršulja, B.B. (1981) Catecholamine turnover in cerebral cortex and caudate during long term reflow following transient ischemia in gerbil. u: [ur.] Cerebral vascular disease, Amsterdam: Excerpta Medica, 3, 261
|
|
Duffy, T.E., Nelson, S.R., Lowry, O.H. (1972) Cerebral carbohydrate metabolism during acute hypoxia and recovery. Journal of Neurochemistry, 19(4), 959-77
|
|
Đuričić, B.M., Mršulja, B.B. (1979) Brain microvessels: Glucose metabolizing enzymes in ischemia and subsequent recovery. u: [ur.] Pathophysiology at cerebral energy metabolism, New York: Plenum press, 239
|
|
Ginsberg, M.D., Prado, R., Dietrich, W.D., Busto, R., Watson, B.D. (1987) Hyperglycemia reduces the extent of cerebral infarction in rats. Stroke, 18(3): 570-4
|
1
|
Harukuni, I., Bhardwaj, A. (2006) Mechanisms of brain injury after global cerebral ischemia. Neurologic clinics, 24(1): 1-21
|
|
Hillered, L., Smith, M., Siesjö, B.K. (1985) Lactic Acidosis and Recovery of Mitochondrial Function Following Forebrain Ischemia in the Rat. Journal of Cerebral Blood Flow & Metabolism, 5(2): 259-266
|
|
Klatzo, I. (1975) Pathophysiological aspects of cerebral ischemia. u: [ur.] The nervous system: The basic neurosciences, New York, Press, 313
|
|
Kobayashi, M., Lust, W.D., Passonneau, J.V. (1977) Concentrations of energy metabolites and cyclic nucleotides during and after bilateral ischemia in the gerbil cerebral cortex. Journal of neurochemistry, 29(1): 53-9
|
|
Kogure, K., Scheinberg, P., Matsumoto, A., Busto, R., Reinmuth, O.M. (1975) Catechol amines in experimental brain ischemia. Archives of Neurology, 32(1), 21-4
|
|
Kumami, K., Mršulja, B.B., Ueki, Y., Đuričić, B.M., Spatz, M. (1989) Effect of ischemia on noradrenergic and energy-related metabolites in the cerebral cortex of young and adult gerbils. Metabolic brain disease, 3, 273
|
|
LeMay, D.R., Gehua, L., Zelenock, G.B., D'Alecy, L.G. (1988) Insulin administration protects neurologic function in cerebral ischemia in rats. Stroke, 19(11): 1411-9
|
|
Li, P.A., Shamloo, M., Smith, M.L., Katsura, K., Siesjö, B.K. (1994) The influence of plasma glucose concentrations on ischemic brain damage is a threshold function. Neuroscience letters, 177(1-2): 63-5
|
|
Lust, D.W., Kobayashi, M., Mršulja, B.B., Weaton, A., Pasonneau, J.V. (1977) Cyclic nucleotide levels in the gerbil cerebral cortex, cerebellum and spinal cord following bilateral ischemia. u: [ur.] Tissue hypoxia and ischemia, Pleunum press
|
|
Lust, W.D., Mrsulja, B.B., Mrsulja, B.J., Passonneau, J.V., Klatzo, I. (1975) Putative neurotransmitters and cyclic nucleotides in prolonged ischemia of the cerebral cortex. Brain research, 98(2): 394-9
|
|
Ljunggren, B., Schutz, H., Siesjö, B.K. (1974) Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain research, 73(2): 277-89
|
|
Meyer, J.S., Denny-Brown, D. (1975) The cerebral collateral circulation: Factors influencing collateral blood flow. Neurol (Minneap.), 7, 447
|
|
Mrsulja, B.B., Lust, W.D., Mrsulja, B.J., Passonneau, J.V., Klatzo, I. (1976) Post-ischemic changes in certain metabolites following prolonged ischemia in the gerbil cerebral cortex. Journal of Neurochemistry, 26(6): 1099-1103
|
|
Mršulja, B.B., Djuričić, B.M., Mićić, D.V., Cvejić, V., Mršulja, B.J., Kostić, V. (1989) Biochemistry of cerebral ischemia: Pathophysiological considerations. Iugoslav Physiol Pharmacol Acta, 25(suppl 8): 89-105
|
|
Mršulja, B.B., i dr. (1979) Some new aspects of the pathochemistry of the postischemic period. u: Pathophysiology of cerebral energy metabolism, New York: Plenum press, 47, neditors
|
|
Mršulja, B., Lust, W.D., Ueki, Y. (1986) Metabolic profile of regional ischemia in the gerbil brain. 2. Dynamics of the 1st minute after 5-minute ischemia. Acta biologica iugoslavica - serija C: Physiologica et pharmacologica acta, 22(2): 185-186
|
|
Murakami, N., Lust, W.D., Wheaton, A.B., Passonneau, J.V. (1979) Short term unilateral ischemia in gerbils: A reevaluation. u: [ur.] Pathophysiology of cerebral energy metabolism, New York: Plenum press, 33
|
|
Myers, R.E., Yamaguchi, M. (1976) Effects of serum glucose concentration on brain response to circulatory arrest. J Neurophathol Exp Neurol, 35, 301
|
|
Prado, R., Ginsberg, M.D., Dietrich, W.D., Watson, B.D., Busto, R. (1988) Hyperglycemia increases infarct size in collaterally perfused but not end-arterial vascular territories. Journal of cerebral blood flow and metabolism, 8(2): 186-92
|
|
Siesjo, B.K. (1978) Brain energy metabolism. New York, itd: Wiley
|
|
Siesjö, B.K., Ljunggren, B. (1973) Cerebral energy reserves after prolonged hypoxia and ischemia. Archives of neurology, 29(6): 400-7
|
|
Smith, M.L., von Hanwehr, R., Siesjö, B.K. (1986) Changes in Extra- and Intracellular pH in the Brain During and Following Ischemia in Hyperglycemic and in Moderately Hypoglycemic Rats. Journal of Cerebral Blood Flow & Metabolism, 6(5): 574-583
|
1
|
Song, E., Chu, K., Jeong, S., Jung, K., Kim, S., Kim, M., Yoon, B. (2003) Hyperglycemia exacerbates brain edema and perihematomal cell death after intracerebral hemorrhage. Stroke, 34(9): 2215-20
|
|
Spatz, M., Mršulja, B.B. (1990) Monoamines and cerebral ischemia. u: [ur.] Cerebral ischemia and resuscitation, Boston: CRC press, 179
|
|
Voll, C.L., Whishaw, I.Q., Auer, R.N. (1989) Postischemic insulin reduces spatial learning deficit following transient forebrain ischemia in rats. Stroke, 20(5): 646-51
|
|
Watanabe, H., Ishii, S. (1976) The effect of brain ischemia on the levels of cyclic AMP and glycogen metabolism in gerbil brain in vivo. Brain research, 102(2): 385-9
|
|
Watanabe, H., Passonneau, J.V. (1974) The effect of trauma on cerebral glycogen and related metabolites and enzymes. Brain Research, 66(1): 147-159
|
|
Weinberger, J., Nieves-Rosa, J. (1987) Cerebral blood flow in the evolution of infarction following unilateral carotid artery occlusion in Mongolian gerbils. Stroke, 18(3): 612-5
|
|
Weinberger, J., Nieves-Rosa, J. (1988) Monoamine neurotransmitters in the evolution of infarction in ischemic striatum: Morphologic correlation. Journal of Neural Transmission, 71(2): 133-142
|
1
|
Williamson, D.H., Lund, P., Krebs, H.A. (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J, 103(2): 514-27
|
|
|
|