Article metrics

  • citations in SCindeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[=>]
  • visits in previous 30 days:4
  • full-text downloads in 30 days:3
article: 1 from 1  
Back back to result list
Ekonomika poljoprivrede
2018, vol. 65, iss. 3, pp. 1139-1146
article language: English
document type: Review Paper
published on: 25/10/2018
doi: 10.5937/ekoPolj1803139M
Creative Commons License 4.0
The possibility of using data mining in the research of agricultural holdings
aMinistry of Defense, Budget Department, Belgrade
bSerbian Armed Forces, Belgrade
cMinistry of Defense, Belgrade
dUniversity of Defence, Military Academy, Belgrade
eUniversity of Defence, Belgrade

e-mail: milunmil68@gmail.com, radovandam78@gmail.com, nedzimam66@gmail.com, kosrad74@gmail.com, curcicmihailo@gmail.com, vladirist72@gmail.com, draganboj74@gmail.com

Abstract

Purpose. The aim of this study was to examine the usefulness and accuracy of Data Mining techniques on the example of testing the presence of impact evaluation of the quality of the land on the level of income of agricultural holdings on the basis of test samples. Methodology. The study was analysis conducted on a random sample for identifying key factors in the research of impact evaluation of the quality of the land on the level of income of agricultural holdings, on a data set of 179 examples, where the input consists of various variables: factor of erosivity, the power of the land, reducing the pH value, presence of organic matter, then target discrete variables with two descriptive values: at a expected yield and real yield. Results and Conclusions. The results obtained from the experiments agree confirmed a physical and chemical factors properties largely determines the classification results.

Keywords

agricultural; data mining; unsupervised discriminant analysis; decision tree

References

Bengio, Y., Delalleau, O., Roux, N.L., Paiement, J., Vincent, P., Ouimet, M. (2004) Learning Eigenfunctions Links Spectral Embedding and Kernel PCA. Neural Computation, 16(10): 2197-2219
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A. (1984) Classification and regression trees. London: Chapman and Hall
Breiman, L. (2001) Machine Learning, 45(1): 5-32
Han, J., Kamber, M. (2000) Data Mining: Concepts and Techniques. San Francisco: Elsevier
Hiironen, J., Riekkinen, K. (2016) Agricultural impacts and profitability of land consolidations. Land Use Policy, 55: 309-317
Hira, S., Deshpande, P.S. (2015) Data Analysis using Multidimensional Modeling, Statistical Analysis and Data Mining on Agriculture Parameters. Procedia Computer Science, 54: 431-439
Kamilaris, A., Kartakoullis, A., Prenafeta-Boldú, F.X. (2017) A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143: 23-37
Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., Schuman, G. E. (1997) Soil Quality: A Concept, Definition, and Framework for Evaluation (A Guest Editorial). Soil Science Society of America Journal, 61(1): 4
Kohavi, R. (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. in: The 14th international joint conference on Artificial intelligence, Montreal, Quebec, Canada - August 20 - 25, 1995, Proceedings of, 14(2), 1137-1145
Kotsiantis, S.B., Zaharakis, I., Pintelas, P. (2007) Supervised machine learning: A review of classification techniques. Informatica, 31(3), 249-268
Matei, O., Rusu, T., Petrovan, A., Mihuţ, G. (2017) A Data Mining System for Real Time Soil Moisture Prediction. Procedia Engineering, 181: 837-844
McFarlane, J.A., Blackwell, B.D., Mounter, S.W., Grant, B.J. (2016) From agriculture to mining: The changing economic base of a rural economy and implications for development. Economic Analysis and Policy, 49: 56-65
Mihajlović, M. (2016) Odnos menadžmenta preduzeća i korporativnog upravljanja. Oditor - časopis za Menadžment, finansije i pravo, vol. 2, br. 1, str. 4-10
Pamucar, D., Cirovic, G. (2108) Vehicle route selection with an adaptive neuro fuzzy inference system in uncertainty conditions. Decision Making: Applications in Management and Engineering, 1(1): 13-37
Rikalovic, A., Soares, G.A., Ignjatic, J. (2108) Spatial analysis of logistics center location: a comprehensive approach. Decision Making: Applications in Management and Engineering, 1(1): 38-50
Sabarina, K., Priya, N. (2015) Lowering Data Dimensionality in Big Data for the Benefit of Precision Agriculture. Procedia Computer Science, 48: 548-554
Saeys, Y., Inza, I., Larranaga, P. (2007) A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19): 2507-2517
Touw, W. G., Bayjanov, J. R., Overmars, L., Backus, L., Boekhorst, J., Wels, M., van Hijum, S. A. F. T. (2013) Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?. Briefings in Bioinformatics, 14(3): 315-326
Trgovčević-Prokić, M., Počuča, M. (2016) Acquisition of agricultural land. Ekonomika poljoprivrede, vol. 63, br. 4, str. 1281-1295
Vukoje, A. (2013) Factors of existence as a condition of creating a market position of the company / Faktori egzistencije kao uslov stvaranja tržišne pozicije preduzeća. Oditor, 1(5), 27-37
Xu, Z., Lee, J., Park, D., Chung, Y. (2017) Multidimensional analysis model for highly pathogenic avian influenza using data cube and data mining techniques. Biosystems Engineering, 157: 109-121