
References

1

Akkouchi, M., Popa, V. (2011) Wellposedness of fixed point problem for a multifunction satisfying an implicit relation. Mathematica Moravica, vol. 15, br. 2, str. 19


Alfaqih, W.M., Imdad, M., Rouzkard, F. (2020) Unified common fixed point theorems in complex valued metric spaces via an implicit relation with applications. Boletim da Sociedade Paranaense de Matemática, 38(4): 929


Ali, J., Imdad, M. (2009) Unifying A multitude of common fixed point theorems employing an implicit relation. Communications of the Korean Mathematical Society, 24(1): 4155

1

Aliouche, A., Popa, V. (2008) Coincidence and common fixed point theorems for hybrid mappings. Mathematica Moravica, br. 121, str. 113

1

Beloul, S., Tomar, A. (2017) A coincidence and common fixed point theorem for subsequentially continuous hybrid pairs of maps satisfying an implicit relation. Mathematica Moravica, vol. 21, br. 2, str. 1525

1

Berinde, V., Vetro, F. (2012) Common fixed points of mappings satisfying implicit contractive conditions. Fixed Point Theory and Applications, 2012(1): 105


Bouhadjera, H., Djoudi, A. (2012) Fixed point for occasionally weakly biased maps. Southeast Asian Bulletin of Mathematics, 36(4): 489500

2

Chandra, N., Joshi, M.C., Singh, N.K. (2017) Common fixed points for faintly compatible mappings. Mathematica Moravica, vol. 21, br. 2, str. 5159


Deshpande, B., Chouhan, S. (2012) Common fixed point theorem for occasionally weakly biased mappings and its application to best approximation. East Asian mathematical journal, 28(5): 543552

1

Deshpande, B., Pathak, R. (2014) Common fixed point theorems for hybrid pairs of mappings using implicit relations. Mathematica Moravica, vol. 18, br. 1, str. 920

1

Hakima, B. (2018) Different common fixed point theorems of integral type for pairs of subcompatible mappings. Mathematica Moravica, vol. 22, br. 2, str. 4157


Imdad, M., Sharma, A., Chauhan, S. (2014) Some common fixed point theorems in metric spaces under a different set of conditions. Journal of Mathematics, Novi Sad, vol. 44, br. 1, str. 183199


Jang, J.K., Yun, J.K., Bae, N.J., Kim, J.H., Lee, D.M., Kang, S.M. (2013) Common fixed point theorems of compatible mappings in metric spaces. International Journal of Pure and Applied Mathematics, 84(1): 171183


Jha, K. (2007) Common fixed point for weakly compatible maps in metric space. Kathmandu University Journal of Science, Engineering and Technology, 1(4), 16

4

Jungck, G., Murthy, P.P., Cho, Y. (1993) Compatible mappings of type $(A)$ and common fixed points. Mathematica Japonica, 38, 2, 381390


Jungck, G., Pathak, H.K. (1995) Fixed points via 'biased maps'. Proceedings of the American Mathematical Society, 123(7): 20492060

10

Jungck, G. (1986) Compatible mappings and common fixed points. International Journal of Mathematics and Mathematical Sciences, 9(4): 771779


Liu, X., Chauhan, S., Chaudhari, S. (2013) Some common fixed point theorems for converse commuting mappings via implicit relation. Mathematica Moravica, vol. 17, br. 1, str. 7987


Pant, V. (2011) Common fixed points for nonexpansive type mappings. Mathematica Moravica, vol. 15, br. 1, str. 3139

1

Pathak, H.K., Cho, Y.J. (1998) Common fixed points of biased maps of type (A) and applications. International Journal of Mathematics and Mathematical Sciences, 21(4): 681693


Phaneendra, T., Prasad, V.S.R. (2014) Two generalized common fixed point theorems involving compatibility and property E.A. Demonstratio Mathematica, 47(2): 449458

3

Popa, V. (1997) Fixed point theorems for implicit contractive mappings. Stud. Cercet. Stiinµ. Ser. Mat. Univ. Bacau, 7, 129133

4

Popa, V. (1999) Some fixed point theorems for compatible mappings satisfying an implicit relation. Demonstratio Mathematica, 32, 1, 157163


Popa, V. (2020) A general fixed point theorem for two pairs of absorbing mappings in Gp metric spaces. Annales Mathematicae Silesianae, 34(2): 268285


Popa, V. (2007) Two coincidence and fixed point theorems for hybrid strict contractions. Mathematica Moravica, br. 11, str. 7983


Popa, V. (2003) On some fixed point theorems for mappings satisfying a new type of implicit relation. Mathematica Moravica, br. 7, str. 6166


Saluja, G.S. (2020) Some common fixed point theorems on partial metric spaces satisfying implicit relation. Mathematica Moravica, vol. 24, br. 1, str. 2943


Singh, A., Prasad, K. (2019) A fixed point theorem for biased maps satisfying an implicit relation. New Trends in Mathematical Science, 1(7): 3947


Singh, Y.M., Singh, M.R. (2012) Fixed points of occasionaly weakly biased mappings. Advances in Fixed Point Theory, 2(3), 286297



