|
Reference
|
1
|
Akkouchi, M., Popa, V. (2011) Well-posedness of fixed point problem for a multifunction satisfying an implicit relation. Mathematica Moravica, vol. 15, br. 2, str. 1-9
|
|
Alfaqih, W.M., Imdad, M., Rouzkard, F. (2020) Unified common fixed point theorems in complex valued metric spaces via an implicit relation with applications. Boletim da Sociedade Paranaense de Matemática, 38(4): 9-29
|
|
Ali, J., Imdad, M. (2009) Unifying A multitude of common fixed point theorems employing an implicit relation. Communications of the Korean Mathematical Society, 24(1): 41-55
|
1
|
Aliouche, A., Popa, V. (2008) Coincidence and common fixed point theorems for hybrid mappings. Mathematica Moravica, br. 12-1, str. 1-13
|
1
|
Beloul, S., Tomar, A. (2017) A coincidence and common fixed point theorem for subsequentially continuous hybrid pairs of maps satisfying an implicit relation. Mathematica Moravica, vol. 21, br. 2, str. 15-25
|
1
|
Berinde, V., Vetro, F. (2012) Common fixed points of mappings satisfying implicit contractive conditions. Fixed Point Theory and Applications, 2012(1): 105
|
|
Bouhadjera, H., Djoudi, A. (2012) Fixed point for occasionally weakly biased maps. Southeast Asian Bulletin of Mathematics, 36(4): 489-500
|
2
|
Chandra, N., Joshi, M.C., Singh, N.K. (2017) Common fixed points for faintly compatible mappings. Mathematica Moravica, vol. 21, br. 2, str. 51-59
|
|
Deshpande, B., Chouhan, S. (2012) Common fixed point theorem for occasionally weakly biased mappings and its application to best approximation. East Asian mathematical journal, 28(5): 543-552
|
1
|
Deshpande, B., Pathak, R. (2014) Common fixed point theorems for hybrid pairs of mappings using implicit relations. Mathematica Moravica, vol. 18, br. 1, str. 9-20
|
1
|
Hakima, B. (2018) Different common fixed point theorems of integral type for pairs of subcompatible mappings. Mathematica Moravica, vol. 22, br. 2, str. 41-57
|
|
Imdad, M., Sharma, A., Chauhan, S. (2014) Some common fixed point theorems in metric spaces under a different set of conditions. Journal of Mathematics, Novi Sad, vol. 44, br. 1, str. 183-199
|
|
Jang, J.K., Yun, J.K., Bae, N.J., Kim, J.H., Lee, D.M., Kang, S.M. (2013) Common fixed point theorems of compatible mappings in metric spaces. International Journal of Pure and Applied Mathematics, 84(1): 171-183
|
|
Jha, K. (2007) Common fixed point for weakly compatible maps in metric space. Kathmandu University Journal of Science, Engineering and Technology, 1(4), 1-6
|
4
|
Jungck, G., Murthy, P.P., Cho, Y. (1993) Compatible mappings of type $(A)$ and common fixed points. Mathematica Japonica, 38, 2, 381-390
|
|
Jungck, G., Pathak, H.K. (1995) Fixed points via 'biased maps'. Proceedings of the American Mathematical Society, 123(7): 2049-2060
|
10
|
Jungck, G. (1986) Compatible mappings and common fixed points. International Journal of Mathematics and Mathematical Sciences, 9(4): 771-779
|
|
Liu, X., Chauhan, S., Chaudhari, S. (2013) Some common fixed point theorems for converse commuting mappings via implicit relation. Mathematica Moravica, vol. 17, br. 1, str. 79-87
|
|
Pant, V. (2011) Common fixed points for nonexpansive type mappings. Mathematica Moravica, vol. 15, br. 1, str. 31-39
|
1
|
Pathak, H.K., Cho, Y.J. (1998) Common fixed points of biased maps of type (A) and applications. International Journal of Mathematics and Mathematical Sciences, 21(4): 681-693
|
|
Phaneendra, T., Prasad, V.S.R. (2014) Two generalized common fixed point theorems involving compatibility and property E.A. Demonstratio Mathematica, 47(2): 449-458
|
3
|
Popa, V. (1997) Fixed point theorems for implicit contractive mappings. Stud. Cercet. Stiinµ. Ser. Mat. Univ. Bacau, 7, 129-133
|
4
|
Popa, V. (1999) Some fixed point theorems for compatible mappings satisfying an implicit relation. Demonstratio Mathematica, 32, 1, 157-163
|
|
Popa, V. (2020) A general fixed point theorem for two pairs of absorbing mappings in Gp -metric spaces. Annales Mathematicae Silesianae, 34(2): 268-285
|
|
Popa, V. (2007) Two coincidence and fixed point theorems for hybrid strict contractions. Mathematica Moravica, br. 11, str. 79-83
|
|
Popa, V. (2003) On some fixed point theorems for mappings satisfying a new type of implicit relation. Mathematica Moravica, br. 7, str. 61-66
|
|
Saluja, G.S. (2020) Some common fixed point theorems on partial metric spaces satisfying implicit relation. Mathematica Moravica, vol. 24, br. 1, str. 29-43
|
|
Singh, A., Prasad, K. (2019) A fixed point theorem for biased maps satisfying an implicit relation. New Trends in Mathematical Science, 1(7): 39-47
|
|
Singh, Y.M., Singh, M.R. (2012) Fixed points of occasionaly weakly biased mappings. Advances in Fixed Point Theory, 2(3), 286-297
|
|
|
|