Metrika članka

  • citati u SCindeksu: [3]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:17
  • preuzimanja u poslednjih 30 dana:11
članak: 4 od 14  
Back povratak na rezultate
Vojnotehnički glasnik
2017, vol. 65, br. 2, str. 378-391
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.5937/vojtehg65-11904

Creative Commons License 4.0
Struktura i svojstva prevlake Ni22Cr10Al1Y deponovane vakuum-plazma-sprej procesom
Institut za mikrotalasnu tehniku i elektroniku / IMTEL, Beograd

e-adresa: drmrdakmihailo@gmail.com

Projekat

Razvoj tehnologije izrade obloge i jezgra na bazi domaćih sirovina za proizvodnju specijalnih obloženih elektroda namenjenih za elektrolučno zavarivanje čelika (MPNTR - 34016)

Sažetak

Cilj rada jeste da se vakuum-plazma-sprej procesom deponuju slojevi prevlake Ni22Cr10Al1Y za zaštitu komponenti gasnih turbina od oksidacije i visokotemperaturne korozije. Prevlaka može znatno uticati na svojstva substrata, jer zajedno sa substratom formira kompozit. Vrsta procesa depozicije prevlake i režim termičke obrade prevlake sa substratom bitno utiču na njenu otpornost na visokotemperaturno puzanje. Deponovanje praha Ni22Cr10Al1Y urađeno je vakuum-plazma-sprej sistemom firme Plasma Technik - AG koji koristi komandni pult A-2000 i plazma pištoljem F4. Prevlaka deponovana na substratu od legure INCONEL X-750 termički je obrađena na 11000C u trajanju od 2 sata u zaštitnoj atmosferi argona. Morfologija čestica praha ispitana je metodom skening elektronske mikroskopije. Ispitivanja mikrotvrdoće slojeva rađena su metodom HV0.3 i čvrstoće spoja metodom ispitivanja na zatezanje, koja su bila u skladu sa standardom Pratt & Whitney. Mikrostruktura slojeva prevlake u deponovanom stanju ispitana je na svetlosnom mikroskopu. Nagrizanje prevlake rađeno je mešanjem azotne kiseline 2,5 ml HNO3 sa 7,5 ml fluorovodonične kiseline HF. Analiza mikrostrukture nagrizene prevlake pre i posle termičke obrade, kao i debljina difuzione zone, izvedena je na svetlosnom mikroskopu, na osnovu čega je ocenjen kvalitet prevlake.

Ključne reči

Reference

*** (2002) Turbojet engine-standard practices manual. East Hartford, USA: Pratt-Whitney, Part No 58 5005
*** (2012) Material product data sheet: Nickel chromium aluminum yttrium (NiCrAlY) thermal spray powders. Sulzer Metco, Amdry 9624, DSMTS-0102.0
Achar, D.R.G., Munoz-Arroyo, R., Singheiser, L., Quadakkers, W.J. (2004) Modelling of phase equilibria in MCrAlY coating systems. Surface and Coatings Technology, 187(2-3): 272-283
Dahl, K.V., Hald, J., Horsewell, A. (2006) Interdiffusion Between Ni-Based Superalloy and MCrAlY Coating. Defect and Diffusion Forum, 258-260: 73-78
Feuerstein, A., Knapp, J., Taylor, T., Ashary, A., Bolcavage, A., Hitchman, N. (2008) Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review. Journal of Thermal Spray Technology, 17(2): 199-213
Funk, M., Ma, K., Eberl, C., Schoenung, J. M., Göken, M., Hemker, K. J. (2011) High-Temperature Mechanical Behavior of End-of-Life Cryomilled NiCrAlY Bond Coat Materials. Metallurgical and Materials Transactions A, 42(8): 2233-2241
Gómez-Acebo, T., Navarcorena, B., Castro, F. (2004) Interdiffusion in multiphase, Al-Co-Cr-Ni-Ti diffusion couples. Journal of Phase Equilibria and Diffusion, 25(3): 237-251
Itoh, Y., Tamura, M. (1999) Reaction Diffusion Behaviors for Interface Between Ni-Based Super Alloys and Vacuum Plasma Sprayed MCrAlY Coatings. Journal of Engineering for Gas Turbines and Power, 121(3): 476
Liu, Y.Z., Hu, X.B., Zheng, S.J., Zhu, Y.L., Wei, H., Ma, X.L. (2015) Microstructural evolution of the interface between NiCrAlY coating and superalloy during isothermal oxidation. Materials & Design, 80: 63-69
Ma, K., Tang, F., Schoenung, J.M. (2010) Investigation into the effects of Fe additions on the equilibrium phase compositions, phase fractions and phase stabilities in the Ni-Cr-Al system. Acta Materialia, 58(5): 1518-1529
Mendis, B.G., Hemker, K.J. (2008) Thermal stability of microstructural phases in commercial NiCoCrAlY bond coats. Scripta Materialia, 58(4): 255-258
Mrdak, M., Rakin, M., Medjo, B., Bajić, N. (2015) Experimental study of insulating properties and behaviour of thermal barrier coating systems in thermo cyclic conditions. Materials & Design, 67: 337-343
Mrdak, M.R. (2016) Studija primene plazma naprskanih prevlaka na sekcijama turbomlaznog motora 'ASTAZOU III B'. Vojnotehnički glasnik, vol. 64, br. 1, str. 1-25
Mrdak, M.R. (2012) Study of the properties of plasma deposited layers of nickel-chrome-aluminium-yttrium coatings resistant to oxidation and hot corrosion. Vojnotehnički glasnik, vol. 60, br. 2, str. 182-201
Mrdak, M.R. (2013) Characterization of vacuum plasma sprayed cobalt-nickel-chromium-aluminum-yttrium coatings. Vojnotehnički glasnik, vol. 61, br. 4, str. 26-47
Padture, N.P., Gell, M., Jordan, E.H. (2002) Thermal barrier coatings for gas-turbine engine applications. Science, 296(5566): 280-4
Tang, F., Ajdelsztajn, L., Kim, G.E., Provenzano, V., Schoenung, J.M. (2006) Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings. Materials Science and Engineering: A, 425(1-2): 94-106
Wang, B., Gong, J., Wang, A.Y., Sun, C., Huang, R.F., Wen, L.S. (2002) Oxidation behaviour of NiCrAlY coatings on Ni-based superalloy. Surface and Coatings Technology, 149(1): 70-75
Yuan, K., Eriksson, R., Lin, P.R., Li, X., Johansson, S., Wang, Y. (2014) MCrAlY coating design based on oxidation-diffusion modelling. Part I: Microstructural evolution. Surface and Coatings Technology, 254: 79-96