Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:5
članak: 3 od 34  
Back povratak na rezultate
Food and Feed Research
2018, vol. 45, br. 2, str. 193-201
jezik rada: engleski
vrsta rada: originalan članak
doi:10.5937/FFR1802193C

Creative Commons License 4.0
Detoksifikacija koekstrudata lanenog semena i suncokretove sačme - predviđanje procesa
aInstitut za prehrambene tehnologije, Novi Sad
bInstitut za opštu i fizičku hemiju, Beograd
cAgricultural University of Athens, Athens, Greece

e-adresa: dusica.colovic@fins.uns.ac.rs

Projekat

Istraživanje savremenih biotehnoloških postupaka u proizvodnji hrane za životinje u cilju povećanja konkurentnosti, kvaliteta i bezbednosti hrane (MPNTR - 46012)
COST CA 15118 project

Sažetak

Već dugi niz godina laneno seme privlači veliku pažnju u ishrani životinja zbog svog izuzetno povoljnog masnokiselinskog sastava i visokog sadržaja α-linelonske kiseline. Ipak, njegova primena u je ograničena zbog prisustva antinutritivnih materija - cijanogenih glikozida. Do sada je u literaturi obrađena nekolicina postupaka za detoksifikaciju lanenog semena, a ekstrudiranje se ističe kao najefikasnije među njima. U prikazanom eksperimentu, ispitivana je primena veštačkih neuronskih mreža sa ciljem da se predvidi uticaj procesa na razaranje cijanogenih glikozida tokom postupka ekstrudiranja koektrudata lanenog semena i suncokretove sačme. Kao indikator količine prisutnih cijanogenih glikozida u proizvodu određivan je sadržaj cijanovodonične kiseline (HCN), u skladu sa AOAS metodom. Ekstrudiranje materijala izvedeno je na laboratorijskom jednopužnom ekstruderu. Funkcionisanje modela veštačke neuronske mreže upoređeno je sa eksperimentalnim rezultatima kako bi se razvio brz i tačan metod za predviđanje sadržaja HCN u ko-ekstrudatu. Kako su eksteprimentalni rezultati pokazali, najviši sadržaj HCN(126 mg/kg), izmeren je pri najnižem sadržaju vlage (7%) i najmanjoj brzini obrtanja puža eksturdera (240 obrtaja/ minutu). Sa porastom sadržaja vlage i temperature tokom ekstrudiranja, sadržaj HCN je naglo opadao. Model veštačkih neuronskih mreža pokazao je visoku tačnost predviđanja (r2> 0.999), što ukazuje na to da bi model mogao vrlo lako da bude primenjen i u praksi.

Ključne reči

Reference

Altarazi, S., Ammouri, M., Hijazi, A. (2018) Artificial neural network modeling to evaluate polyvinylchloride composites' properties. Computational Materials Science, 153: 1-9
AOAC International (2000) Official methods of analysis of AOAC International. Arlington, VA, USA, 17th Ed. Official Method 915.03, part B
Basheer, I., Hajmeer, M. (2000) Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1): 3-31
Cubeddu, A., Rauh, C., Delgado, A. (2014) Hybrid artificial neural network for prediction and control of process variables in food extrusion. Innovative Food Science & Emerging Technologies, 21: 142-150
Čolović, D., Čolović, R., Lević, J., Ikonić, B., Vukmirović, Đ., Lević, Lj. (2016) Linseed-sunflower meal co-extrudate as a functional additive for animal feed - extrusion optimization. Journal of Agricultural Science and Technology, 1761-1772; 18
Čolović, D., Lević, J., Čabarkapa, I., Čolović, R., Lević, Lj., Sedej, I. (2015) Stability of an extruded, linseed-based functional feed additive with the supplementation of vitamin E and carvacrol. Journal of Animal and Feed Sciences, 24(4): 348-357
Ćurčić, B.L., Pezo, L.L., Filipović, V.S., Nićetin, M.R., Knežević, V. (2014) Osmotic Treatment of Fish in Two Different Solutions-Artificial Neural Network Model. Journal of Food Processing and Preservation, 39(6): 671-680
Deng, L., Feng, B., Zhang, Y. (2018) An optimization method for multi-objective and multi-factor designing of a ceramic slurry: Combining orthogonal experimental design with artificial neural networks. Ceramics International, 44(13): 15918-15923
EFSA (2007) Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to cyanogenic compounds as undesirable substances in animal feed. EFSA Journal, 5(2): 434
Fan, F.H., Ma, Q., Ge, J., Peng, Q.Y., Riley, W.W., Tang, S.Z. (2013) Prediction of texture characteristics from extrusion food surface images using a computer vision system and artificial neural networks. Journal of Food Engineering, 118(4): 426-433
Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandão, G.C., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S., dos Santos, W.N.L. (2007) Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2): 179-186
Hu, X., Weng, Q. (2009) Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sensing of Environment, 113(10): 2089-2102
Ivanov, D., Kokić, B., Brlek, T., Čolović, R., Vukmirović, Đ., Lević, J., Sredanović, S. (2012) Effect of microwave heating on content of cyanogenic glycosides in linseed. Ratarstvo i povrtarstvo, vol. 49, br. 1, str. 63-68
Kollo, T., von Rosen, D. (2005) Advanced Multivariate Statistics with Matrices. Dordrecht: Springer Nature
Kumar, A., Sharma, S. (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Industrial Crops and Products, 28(1): 1-10
Li, Y., Bridgwater, J. (2000) Prediction of extrusion pressure using an artificial neural network. Powder Technology, 108(1): 65-73
Montano, J.J., Palmer, A. (2003) Numeric sensitivity analysis applied to feedforward neural networks. Neural Computing & Applications, 12(2): 119-125
Montgomery, D.C. (1984) Design and analysis of experiments. New York: John Wiley & Sons, 2nd Ed
Pezo, L.L., Ćurčić, B.Lj., Filipović, V.S., Nićetin, M.R., Koprivica, G.B., Mišljenović, N.M., Lević, L.B. (2013) Artificial neural network model of pork meat cubes osmotic dehydration. Hemijska industrija, vol. 67, br. 3, str. 465-475
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S. (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181(2): 259-270
Shankar, T.J., Bandyopadhyay, S. (2007) Prediction of Extrudate Properties Using Artificial Neural Networks. Food and Bioproducts Processing, 85(1): 29-33
Sovány, T., Tislér, Z., Kristó, K., Kelemen, A., Regdon, G. (2016) Estimation of design space for an extrusion-spheronization process using response surface methodology and artificial neural network modelling. European Journal of Pharmaceutics and Biopharmaceutics, 106: 79-87
Sun, Z., Zhang, K., Chen, C., Wu, Y., Tang, Y., Georgiev, M.I., Zhang, X., Lin, M., Zhou, M. (2018) Biosynthesis and regulation of cyanogenic glycoside production in forage plants. Applied Microbiology and Biotechnology, 102(1): 9-16
Taylor, B.J. (2006) Methods and Procedures for the Verification and Validation of Artificial Neural Networks. New York: Springer Science and Business Media
Trelea, I.C., Raoult-Wack, A.L., Trystram, G. (1997) Note: Application of neural network modelling for the control of dewatering and impregnation soaking process (osmotic dehydration) Nota: Aplicación del sistema de simulación de redes neurales para el control de la deshidratación osmótica. Food Science and Technology International, 3(6): 459-465
Turanyi, T., Tomlin, A.S. (2014) Analysis of Kinetics Reaction Mechanisms. Berlin: Springer
Wu, M., Li, D., Wang, L., Zhou, Y., Brooks, M., Chen, X., Mao, Z. (2008) Extrusion detoxification technique on flaxseed by uniform design optimization. Separation and Purification Technology, 61(1): 51-59