Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:14
  • preuzimanja u poslednjih 30 dana:5
članak: 1 od 4  
Vojnosanitetski pregled
2019, vol. 76, br. 3, str. 272-277
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.2298/VSP170228095K

Creative Commons License 4.0
Fiziološka adaptacija za vreme funkcionalnog treninga visokog intenziteta u trajanju od četiri nedelje
aKennesaw State University, Department of Exercise Science and Sports Management, Kennesaw, Georgia, United States
bAppalachian State University, SC, Cratis Dd. Williams School of Graduate Studies, Winston-Salem NC, United States
cTexas A&M International University, College of Nursing and Health Sciences, Laredo, Texas, United States

e-adresa: Bkliszcz@kennesaw.edu

Sažetak

Uvod/Cilj. Funkcionalni trening visokog intenziteta (FTVI) je popularni program mešanih modusa koji koristi i vežbe otpora i aerobne vežbe. Cilj studije bio je ispitivanje fizioloških efekata FTVI programa na fizički aktivne muškarce (10) i žene (10) tokom perioda od četiri nedelje merenjem aerobnog kapaciteta, anaerobnog kapaciteta i maksimalne podignute težine. Metode. Učesnici u studiji prvo su završili test maksimalne potrošnje kiseonika (VO2). Nakon odmora od 48 sati, učesnici su završili test anaerobnog kapaciteta po Wingate protokolu. Po istom protokolu učesnici su uradili test sa jednim maksimalnim ponavljanjem za čučanj, podizanje terata do nivoa deltoidnih mišića i izbačaj naglim trzajem na drugoj lokaciji za trening. Nakon prethodnih merenja, učesnici su pristupili FTVI testu u trajanju od četiri nedelje, nakon čega su urađena ponovna merenja. Rezultati. Značajno poboljšanje VO2 max ustanovljeno je i kod muškarada i kod žena (pre: 46,7 ± 2,6, 33,7 ± 1,7 mL/kg/min; posle: 49,0 ± 3,0, 35,0 ± 1,8 mL/kg/min), Maksimalna Wingate snaga (pre: 1206 ± 106, 708 ± 44 W; posle: 1283 ± 88, 809 ± 38 W); Srednja Wingate snaga (pre: 680 ± 46, 704 ± 48 W; posle: 434 ± 15, 458 ± 18 W; p < 0,05). Zadnji čučanj (pre: 128,8 ± 8,8 kg, 44,1 ± 6,8 kg; posle: 142,7 ± 9,8, 54,3 ± 6,2 kg). Podizanje tereta do nivoa deltoida (pre: 82,5 ± 6,2, 24,1 ± 3,4 kg; posle: 92,7 ± 5,8, 33,2 ± 3,3 kg) i izbačaj naglim trzajem: (pre: 59,3 ± 4,4, 20.9 ± 1,7 kg; posle: 69,1 ± 5,3, 25,0 ± 2,3 kg; p < 0,05). Nije ustanovljena interakcija uticaja pola tokom vremena (p > 0,05). Zaključak. FTVI je pokazao brzo fiziološko poboljšanje u snazi, aerobni i anaerobni kapacitet tokom četiri nedelje kod fizički aktivnih učesnika.

Ključne reči

Reference

Ahtiainen, J.P., Pakarinen, A., Alen, M., Kraemer, W.J., Hukkinen, K. (2003) Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. European Journal of Applied Physiology, 89(6): 555-563
Burgomaster, K.A., Hughes, S.C., Heigenhauser, G.J.F., Bradwell, S.N., Gibala, M.J. (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol, 98(6): 1985-90
Clark, B., Costa, V.P., o'Brien Brendan, J., Guglielmo, L.G., Paton, C.D. (2014) Effects of a Seven Day Overload-Period of High-Intensity Training on Performance and Physiology of Competitive Cyclists. PLoS One, 9(12): e115308
Collins, M.A., Cureton, K.J., Hill, D.W., Ray, C.A. (1991) Relationship of heart rate to oxygen uptake during weight lifting exercise. Medicine and Science in Sports and Exercise, 23(5): 636-640
Folland, J.P., Williams, A.G. (2007) The Adaptations to Strength Training. Sports Medicine, 37(2): 145-168
Gibala, M.J., McGee, S.L. (2008) Metabolic Adaptations to Short-term High-Intensity Interval Training. Exercise and Sport Sciences Reviews, 36(2): 58-63
Gibala, M.J., Little, J.P., MacDonald, M.J., Hawley, J.A. (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. Journal of Physiology, 590(5): 1077-1084
Gibala, M.J., Little, J.P., van Essen, M., Wilkin, G.P., Burgomaster, K.A., Safdar, A., Raha, S., Tarnopolsky, M.A. (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. Journal of Physiology, 575(3): 901-911
Goodman, J.M., Liu, P.P., Green, H.J. (2005) Left ventricular adaptations following short-term endurance training. Journal of Applied Physiology, 98(2): 454-460
Helgerud, J., Haidal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., Simonsen, T., Helgesen, C., Hjorth, N., Bach, R., Hoff, J. (2007) Aerobic High-Intensity Intervals Improve V??O2max More Than Moderate Training. Medicine & Science in Sports & Exercise, 39(4): 665-671
Jabbour, G., Iancu, H., Paulin, A. (2015) Effects of High-Intensity Training on Anaerobic and Aerobic Contributions to Total Energy Release During Repeated Supramaximal Exercise in Obese Adults. Sports Medicine - Open, 1(1):
Keating, S.E., Machan, E.A., o'Connor Helen, T., Gerofi, J.A., Sainsbury, A., Caterson, I.D., Johnson, N.A. (2014) Continuous Exercise but Not High Intensity Interval Training Improves Fat Distribution in Overweight Adults. Journal of Obesity, 2014: 1-12
McKenzie, M., Goldfarb, A., Garten, R., Vervaecke, L. (2014) Oxidative Stress and Inflammation Response Following Aerobic Exercise: Role of Ethnicity. International Journal of Sports Medicine, 35(10): 822-827
Narici, M. V., Roi, G. S., Landoni, L., Minetti, A. E., Cerretelli, P. (1989) Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. European Journal of Applied Physiology and Occupational Physiology, 59(4): 310-319
Osei-Tutu, K.B., Campagna, P.D. (2005) The effects of short- vs. long-bout exercise on mood, VO2max, and percent body fat. Prev Med, 40(1): 92-8
Powers, S.K., Jackson, M.J. (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological Reviews, 88(4): 1243
Sale, D.G. (1988) Neural adaptation to resistance training. Medicine & Science in Sports & Exercise, 20(Sup 1): S135-S145
Seynnes, O.R., de Boer, M., Narici, M.V. (2007) Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of applied physiology, 102(1), 368-373
Tabata, I., Nishimura, K., Kouzaki, M., Hirai, Y., Ogita, F., Miyachi, M., Yamamoto, K. (1996) Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and ??VO2max. Medicine & Science in Sports & Exercise, 28(10): 1327-1330
Talanian, J.L., Galloway, S.D. R., Heigenhauser, G.J. F., Bonen, A., Spriet, L.L. (2007) Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102(4): 1439-1447
Thompson, W.R. (2010) Worldwide survey of fitness trends for 2011. ACSM's Health & Fitness Journal, 14(6): 8-17
Tjønna, A.E., Leinan, I.M., Bartnes, A.T., Jenssen, B.M., Gibala, M.J., Winett, R.A., Wisløff, U. (2013) Low- and High-Volume of Intensive Endurance Training Significantly Improves Maximal Oxygen Uptake after 10-Weeks of Training in Healthy Men. PLoS One, 8(5): e65382
Whyte, L.J., Gill, J.M.R., Cathcart, A.J. (2010) Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism, 59(10): 1421-1428