Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:1
članak: 2 od 5  
Back povratak na rezultate
Journal of Mining and Metallurgy B: Metallurgy
2015, vol. 51, br. 1, str. 81-87
jezik rada: engleski
vrsta rada: neklasifikovan

Mechanical properties of low alloy high phosphorus weathering steel
(naslov ne postoji na srpskom)
aDr B R Ambedkar Institute of Technology, Port Blair, A&N Islands, India
bNational Institute of Foundry & Forge Technology, Hatia, India
cR & D Centre for Iron and Steel, SAIL, Doranda, India



(ne postoji na srpskom)
Mechanical behaviour of two low alloy steels (G11 and G12) was studied with respect to different phosphorus contents. Tensile strength and yield strength increased while percentage elongation at fracture decreased on increasing phosphorus content. The SEM and light optical photomicrograph of low phosphorus steel (G11) revealed ferrite and pearlite microstructures. On increasing phosphorus content from 0.25 wt.% to 0.42 wt.%, the morphology of grains changed from equiaxed to pancake shape and grain size also increased. The Charpy V notch (CVN) impact energy of G11 and G12 steel at room temperature was 32 J and 4 J respectively and their fractographs revealed brittle rupture with cleavage facets for both the steels. However, the fractograph of G11 steel after tensile test exhibited ductile mode of fracture with conical equiaxed dimples while that of G12 steel containing 0.42 wt. % P exhibited transgranular cleavage fracture. Based on this study, G11 steel containing 0.25 wt. % P could be explored as a candidate material for weathering application purpose where the 20 oC toughness requirement is 27 J as per CSN EN10025-2:2004 specification.

Ključne reči


*** ASTM E 8M-98: Standard test methods for flat bar tensile testing of metallic materials
*** ASTM E 23-05: Standard test methods for impact testing of metallic materials
*** (2004) European standard No. CSN EN 10025-2: 2004: Hot rolled products of structural steels: Technical delivery conditions for non-alloy structural steels. Part 2
Abiko, K., Suzuki, S., Kimura, H. (1982) Effect of Carbon on the Toughness and Fracture Mode of Fe. Transactions of the Japan Institute of Metals, 23(2): 43-52
Balasubramaniam, R. (2000) On the corrosion resistance of the Delhi iron pillar. Corrosion Science, 42(12): 2103-2129
Balasubramaniam, R., Kumar, A., Ramesh, V. (2000) Characterization of Delhi iron pillar rust by X-ray diffraction, Fourier transform infrared spectroscopy and Mössbauer spectroscopy. Corrosion Science, 42(12): 2085-2101
Banerji, S.K., Mcmahon, C.J., Feng, H.C. (1978) Metall. Trans. A, 237-247; 9
Briant, C.L., Banerji, S.K. (1979) Metall. Trans. A, 123-126; 10
Briant, C.L., Banerji, S.K. (1982) The Fracture Behavior of Quenched and Tempered Manganese Steels. Metallurgical Transactions A, 13(5): 827-836
Choi, Y.S., Shim, J.J., Kim, J.K. (2004) Mater. Sci. Eng. A., 148-156; 385
De, M.B.R., Ayllon, E.S. (1980) Characterization of Atmospheric Corrosion Products on Weathering Steels. Corrosion, 36(7): 345-347
Dieter, G.E. (1988) Mechanical metallurgy. New York: McGraw-Hill Book Company, SI Metric Edition, 197 and 478
Haq, M.I., Ikram, N. (1993) The effect of boron addition on the tensile properties of control-rolled and normalized C-Mn steels. Journal of Materials Science, 28(22): 5981-5985
Hopkins, B.E., Tipler, H.R. (1958) The effect of phosphorus on the tensile and notch-impact properties of high-purity iron and iron-carbon alloys. Journal of the Iron and Steel Institute, 188, str. 218-237
Kerlins, V. (1999) Fractography. u: Davis J.R., Destefani J.D. [ur.] ASM hand book, USA: ASM International-Materials Information Society, Vol. 12, p. 12-14
Lakhtin, Yu.M. (1977) Engineering physical metallurgy and heat treatment. Moscow: MIR Publishers, (English translation)
Liu, C.M., Nagoya, T., Abiko, K., Kimura, H. (1992) Metall. Trans. A, 263-269; 23
Morcillo, M., Chico, B., Díaz, I., Cano, H., de la Fuente, D. (2013) Atmospheric corrosion data of weathering steels. A review. Corrosion Science, 77: 6-24
Sahoo, G., Balasubramaniam, R. (2007) On Phase Distribution and Phase Transformations in Phosphoric Irons Studied by Metallography. Metallurgical and Materials Transactions A, 38(8): 1692-1697
Spitzig, W.A. (1972) The effects of phosphorus on the mechanical properties of low-carbon iron. Metallurgical Transactions, 3(5): 1183-1188
Spitzig, W.A. (1974) Mater. Sci. Eng. A., 16, 169-179
Steven, W., Balajiva, K.J. (1959) Iron Steel Inst., 193, 141-147
Suzuki, S., Obata, M., Abiko, K., Kimura, H. (1985) Role of Carbon in Preventing the Intergranular Fracture in Iron-Phosphorus Alloys. Transactions of the Iron and Steel Institute of Japan, 25(1): 62-68
Thee, Ch., Hao, L., Dong, J., Mu, X., Wei, X., Li, X., Ke, W. (2014) Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet–dry condition. Corrosion Science, 78: 130-137
Townsend, H.E., Simpson, T.C., Johnson, G.L. (1994) Structure of Rust on Weathering Steel in Rural and Industrial Environments. Corrosion, 50(7): 546-554
Wu, R., Freeman, A.J., Olson, G.B. (1994) First Principles Determination of the Effects of Phosphorus and Boron on Iron Grain Boundary Cohesion. Science, 265(5170): 376-380
Yokoyama, H., Mitao, S., Yamamoto, S., Kataoka, Y., Sugiyama, T. (2001) High Strength Bainitic Steel Rails for Heavy Haul Railways with Superior Damage Resistance. NKK Technical Review, No. 84, 44-51
Yu-Qing, W., McMahon, C.J. (1987) Interaction of phosphorus, carbon, manganese, and chromium in intergranular embrittlement of iron. Materials Science and Technology, 3(3): 207-216
Zhou, G.P., Liu, Z.Y., Qiu, Y.Q., Wang, G.D. (2009) The improvement of weathering resistance by increasing P contents in cast strips of low carbon steels. Materials & Design, 30(10): 4342-4347