Metrika članka

  • citati u SCindeksu: [3]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0
članak: 8 od 13  
Back povratak na rezultate
Scientific Technical Review
2012, vol. 62, br. 2, str. 20-29
jezik rada: engleski
vrsta rada: naučni članak
Upravljanje necelobrojnog reda jednim robotskim sistemom pogonjenog jednosmernim motorima
Faculty of Mechanical Engineering, Department of Mechanics, Belgrade

Sažetak

U ovom radu, predstavljeni su novi PID algoritmi upravljanja zasnovani na računu necelobrojnog reda i optimalnoj proceduri u zadatku pozicioniranja robotskog sistema sa tri stepena slobode pogonjen jednosmernim motorima. Cilj je bio odrediti optimalno podešavanje PIα Dβ kontrolera necelobrojnog reda da bi se ispunili željeni zahtevi zatvorenog sistema upravljanja, uzimajući u obzir prednosti korišćenja necelobrojnog reda α i β . Efikasnost predloženog optimalnog PID upravljanja necelobrojnog reda je demonstriran na pogodno usvojenom robotskom sistemu sa tri stepena slobode kao jednom ilustrativnom primeru. Takođe, ovaj rad predlaže jedno robustno upravljanje u režimu klizanja necelobrojnog reda datim robotom pogonjen jednosmernim motorima. Prvo je projektovan klasični kontroler u kliznom režimu zasnovan na PDα kliznoj površini. Numeričke simulacije su sprovedene da predstave robusne osobine predloženog upravljačkog sistema kao i da istakne značaj datog upravljanja koji se ogleda i u smanjenju oscilacija datog robota u radnom prostoru (chattering-free). Simulacije uključuju i poređenje kontrolera PDα u režimu klizanja necelobrojnog reda sa standardnim PD kontrolerom u režimu klizanja.

Ključne reči

roboti; jednosmerni motor; robustno upravljanje; algoritam upravljanja; PID algoritam; račun necelobrojnog reda; podešavanje vibracije

Reference

Astrom, K.J., Hagglund, T. (1995) PID controllers: Theory, design, and tuning. Research Triangle Park, NC: Instrument Society of America
Astrom, K.J., Hagglund, T. (2000) The future of PID control. u: IFAC Workshop on Digital Control. Past Present and Future of PID Control, (Terrassa, Spain, April 2000), pp. 19-30
Calderon, A.J., Vinagre, B.M., Feliu, V. (2003) Fractional sliding mode control of a DC-DC buck converter with application to DC motor drives. u: ICAR 2003, Coimbra, proceedings
Caputo, M. (1969) Elasticita e Dissipazione. Bologna, Italy: Zanichelli
Chen, Y.H.U.C., Moore, K.L. (2003) Relay feedback tuning of robust pid controllers with iso-damping property. u: Conference on decision and control, IEEE 2003, Maui, Dec. 9-12. 2003
Delavari, H., Ghaderi, R., Ranjbar, A., Momani, S. (2008) Fractional order controller for two-degree of freedom polar robot. u: 2nd Conference on Nonlinear Science and Complexity, Ankara
Edwards, C., Spurgeon, S.K. (1998) Sliding mode control theory and applications. New York: Taylor & Fran
Efe, M.O. (2009) Fractional order sliding mode controller design for fractional order dynamic systems. u: New trends in nanotech. and frac. calculus applications
Grunwald, A.K. (1867) Uber begrenzte derivationen und deren anwendung. Zeit für Mathematik und Physik, 12, pp. 441-480
Hace, A., Jezernik, K. (2000) Robust position tracking control for direct drive motor. u: Annual conference of the IEEE (XXVI), IECON 2000, Industrial Electronics Society
Hilfer, R. (2000) Applications of fractional calculus in physics. Singapore: World Scientific
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. (2006) Theory and applications of fractional differential equations. u: North-Holland mathematical studies, Amsterdam - London - New York: Elsevier (North-Holland) Science Publishers
Lazarević, M.P. (2005) Optimalno upravljanje redundantnim robotima na način sličan čoveku. FME Transactions, vol. 33, br. 2, str. 53-64
Lazarević, M.P. (2006) Finite time stability analysis of PD alpha fractional control of robotic time-delay systems. Mechanics research communications, 33(2): 269-279
Letnikov, A.V. (1868) Theory of differentiation with an arbitrary index. Matem. Sbornik, 3: 1-66, (Russian)
Lurye, A.I. (1961) The analytical mechanics. Moscow: Phys.-Math. Giz
Maione, G., Lino, P. (2007) New tuning rules for fractional PIα controllers. Nonlinear Dynamics, 49(1-2): 251-257
Mehmet, Ö.E., Kasnakoglu, C. (2008) A fractional adaptation law for sliding mode control. Int. J. Adapt. Control Signal Process
Monje, C.A., Feliu, V. (2004) The fractional-order lead compensator. u: IEEE international conference on computational cybernetics, Vienna, Aug. 30 - Sep. 01
Monje, C.A., i dr. (2010) Fractional-order Systems and Controls. London: Springer - Verlag
Oldham, K.B., Spanier, J. (1974) The fractional calculus: Theory and applications of differentiation and integration to arbitrary order. New York: Academic Press
Oustaloup, A., Sabatier, J., Lanusse, P. (1999) From fractal robustness to CRONE control. Fractional Calc. Appl. Anal, 2(1), pp. 1-30
Oustaloup, A., Mathieu, B. (1991) La commande crone: Du scalaire au multivariable. Paris: Hermes Science Publications
Podlubny, I. (2002) Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal, 5 No 4 (2002) str. 367-386, Posted on http:www.tuke.sk/podlubnv/papers.html as http:people.tuke.sk/igor.podlubnv/pspdf/Pifcaa_r.pdf)
Podlubny, I. (1999) Fractional differential equations. New York-San Diego, itd: Academic Press
Samardžić, J., Lazarević, M.P., Cvetković, B. (2011) Optimal conventional and fractional PID control algorithm for a robotic system with three degrees of freedom driven by DC motors. u: SISY 2011 and 2011 IEEE 9th international symposium on intelligent systems and informatics, Subotica, Serbia, September 8-10
Valerio, D. (2005) Fractional robust system control. Lisbon: Technical University of Lisboa, PhD thesis