Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:15
  • preuzimanja u poslednjih 30 dana:10
članak: 1 od 51  
Back povratak na rezultate
FME Transactions
2020, vol. 48, br. 2, str. 404-410
jezik rada: engleski
vrsta rada: neklasifikovan
objavljeno: 04/05/2020
doi: 10.5937/fme2002404G
Creative Commons License 4.0
Optimizacija višestrukog odgovora kod EDM postupka korišćenjem meta-modela simboličke regresije
aSikkim Manipal University, Department of Mechanical Engineering, Sikkim Manipal Institute of Technology, Majhitar, India
bVel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Department of Mechanical Engineering, India
cUniversity of Eastern Finland, School of Computing, Kuopio, Finland

e-adresa: drkanakkalita@veltech.edu.in

Sažetak

Elektroerozivna obrada (EDM) je popularan postupak obrade koji ima široku upotrebu kod teško obradljivih i krtih materijala. Nije potreban rezni alat i može da se koristi kod obradaka složene geometrije. Međutim, nedostaci su mala brzina skidanja materijala i preterano habanje alata. Rad pokušava da reši navedene slabosti primenom meta-modela zajedno sa sveobuhvatnom optimizacijom u cilju predviđanja odgovarajućih kombinacija ulaznih parametara (struja, uspostavljanje i gašenje električnog luka), što bi dovelo do povećanja brzine skidanja materijala i habanje alata svelo na minimum. Metamodeli su razvijeni korišćenjem nove simboličke regresije bazirane na genetskom programiranju. Posle komparativne evaluacije u odnosu na konvencionalne meta-modele metodologije odgovora površine, meta-modeli genetskog programiranja pokazuju bolji i precizniji proračun. Meta-modeli genetskog programiranja su zatim povezani sa genetskim algoritmom u cilju višestruke optimizacije EDM postupka.

Ključne reči

Reference

Novododat članak: provera, normiranje i linkovanje referenci u toku.
Puertas L. and Luis C. J., "A study on the machining parameters optimisation of electrical discharge machining," Journal of materials processing technology, vol. 143, pp. 521-526, 2003.
Kibria G., Shivakoti I. and Bhattacharyya B., "Experimentation and analysis into micro-hole machining of Ti-6Al-4V by micro-EDM using boron carbide powder mixed de-ionized water," International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), vol. 4, pp. 22-41, 2014.
Salman O. and Kayacan M. C., "Evolutionary programming method for modeling the EDM parameters for roughness," journal of materials processing technology, vol. 200, pp. 347-355, 2008.
Ragavendran U., Ghadai R. K., Bhoi A., Ramachandran M. and Kalita K., "Sensitivity Analysis and Optimization of EDM Process Parameters," Transactions of the Canadian Society for Mechanical Engineering, 2018.
Diyaley S., Shilal P., Shivakoti I., Ghadai R. and Kalita K, "PSI and TOPSIS Based Selection of Process Parameters in WEDM," vol. 61, no. 4.
Ghosh A.and Mallik A. K., "Manufacturing science, first ed., Affiliated East-West Press, New Delhi," Reprint 2008.
Mishra P. K., "Non-conventional machining processes," vol. 3, New Delhi, Published by N K Mehra (Narosa publishing house), 2002.
Pandey P. C.and Shan H. S., Modern machining processes, New Delhi: Tata McGraw-Hill Education, 1980.
Kalita K., Nasre P., Dey P. and Haldar S., "Metamodel based multi-objective design optimization of laminated composite plates," Structural Engineering and Mechanics, vol. 67, pp. 301-310, 2018.
Kalita K., Mallick P. K., Bhoi A. K. and Ghadai R. K., "Optimizing drilling induced delamination in GFRP composites using genetic algorithm & particle swarm optimisation," Advanced Composites Letters, vol. 27, p. 1, 2018.
Kilickap E., "Modeling and optimization of burr height in drilling of Al-7075 using Taguchi method and response surface methodology," The International Journal of Advanced Manufacturing Technology, vol. 49, pp. 911-923, 2010.
Kilickap E., Huseyinoglu M. and Yardimeden A., "Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm," The International Journal of Advanced Manufacturing Technology, vol. 52, pp. 79-88, 2011.
Ivanović, L. T., Veličković, S. N., Stojanović, B. Ž., Kandeva, M., & Jakimovska, K. (2017). The selection of optimal parameters of gerotor pump by application of factorial experimental design. FME Transactions, 45(1), 159-164.
Behera R. R., Ghadai R. K., Kalita K. and Banerjee S., "Simultaneous prediction of delamination and surface roughness in drilling GFRP composite using ANN," International Journal of Plastics Technology, vol. 20, pp. 424-450, 2016.
Kharwar, P. K., & Verma, R. K. (2019). Grey embedded in artificial neural network (ANN) based on hybrid optimization approach in machining of GFRP epoxy composites. FME Transactions, 47(3), 641-648.
Bettine, F., Ameddah, H., & Rabah, M. (2018). A neural network approach for predicting kinematic errors solutions for trochoidal machining in the matsuura MX-330 Five-axis Machine. FME Transactions, 46(4), 453-462.
Shivakoti I., Kibria G., Pradhan P. M., Pradhan B. B. and Sharma A., "ANFIS based prediction and parametric analysis during turning operation of stainless steel 202," Materials and Manufacturing Processes, vol. 34, pp. 112-121, 2019.
Kumaran S. T., Ko T. J. and Kurniawan R., "Grey fuzzy optimization of ultrasonic-assisted EDM process parameters for deburring CFRP composites," Measurement, vol. 123, pp. 203-212, 2018.
Hourmand M., Farahany S., Sarhan A. A. D. and Noordin M. Y., "Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg 2 Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR-RSM approach," The International Journal of Advanced Manufacturing Technology, vol. 77, pp. 831-838, 2015.
Chiang K.-T., "Modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al 2 O 3+ TiC mixed ceramic," The International Journal of Advanced Manufacturing Technology, vol. 37, pp. 523-533, 2008.
Baraskar S. S., Banwait S. S. and Laroiya S. C., "Multiobjective optimization of electrical discharge machining process using a hybrid method," Materials and Manufacturing Processes, vol. 28, pp. 348-354, 2013.
Hewidy M. S, El-Taweel T. A. and El-Safty M. F., "Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM," Journal of Materials Processing Technology, vol. 169, pp. 328-336, 2005.
Świercz R., Oniszczuk-Świercz D. and Chmielewski T., "Multi-Response Optimization of Electrical Discharge Machining Using the Desirability Function," Micromachines, vol. 10, p. 72, 2019.
Maity K. and. Mishra H, "ANN modelling and Elitist teaching learning approach for multiobjective optimization of micro-EDM," Journal of Intelligent Manufacturing, vol. 29, pp. 1599-1616, 2018.
Yusoff Y., Zain A. M., Sharif S., Sallehuddin R. and Ngadiman M. S., "Potential ANN prediction model for multiperformances WEDM on Inconel 718," Neural Computing and Applications, vol. 30, pp. 2113-2127, 2018.
Thakur D. G., Ramamoorthy B., Vijayaraghavan L., "Some investigations on high speed dry machining of aerospace material Inconel 718 using multicoated carbide inserts," Materials and Manufacturing Processes, vol. 27, pp. 1066-1072, 2012.
Ezugwu E. O., Bonney J., Fadare D. A. and Sales W. F., "Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures," Journal of Materials Processing Technology, vol. 162, pp. 609-614, 2005.
Hao Z.-P., Lu Y., Gao D., Fan Y.-H. and Chang Y.-L., "Cutting parameter optimization based on optimal cutting temperature in machining Inconel718," Materials and Manufacturing Processes, vol. 27, pp. 1084-1089, 2012.
Chakravorty R., Gauri S. K. and Chakraborty S., "Optimization of correlated responses of EDM process," Materials and Manufacturing Processes, vol. 27, pp. 337-347, 2012.
Ghadai R. K., Kalita K., Mondal S. C. and Swain B. P., "PECVD process parameter optimization: towards increased hardness of diamond-like carbon thin films," Materials and Manufacturing Processes, vol. 33, no. 16, pp. 1905-1913, 2018.
Kalita K., Shivakoti I. and Ghadai R. K., "Optimizing process parameters for laser beam micro-marking using genetic algorithm and particle swarm optimization," Materials and Manufacturing Processes, vol. 32, pp. 1101-1108, 2017.
Goldberg D. E., Genetic algorithms, Pearson Education India, 2006.
Kalita K., Dey P., Haldar S.: Robust genetically optimized skew laminates, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018