Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:2
članak: 8 od 51  
Back povratak na rezultate
Serbian Journal of Electrical Engineering
2017, vol. 14, br. 1, str. 161-176
jezik rada: engleski
vrsta rada: neklasifikovan
objavljeno: 21/05/2017
doi: 10.2298/SJEE1701161R
Creative Commons License 4.0
Optimal source localization problem based on TOA measurements
(naslov ne postoji na srpskom)
Univerzitet u Beogradu, Elektrotehnički fakultet

e-adresa: rosic.maja9@gmail.com, mira@etf.rs, peja@etf.rs, milan@etf.rs

Projekat

Napredne tehnike efikasnog korišćenja spektra u bežičnim sistemima (MPNTR - 32028)

Sažetak

(ne postoji na srpskom)
Determining an optimal emitting source location based on the time of arrival (TOA) measurements is one of the important problems in Wireless Sensor Networks (WSNs). The nonlinear least-squares (NLS) estimation technique is employed to obtain the location of an emitting source. This optimization problem has been formulated by the minimization of the sum of squared residuals between estimated and measured data as the objective function. This paper presents a hybridization of Genetic Algorithm (GA) for the determination of the global optimum solution with the local search Newton-Raphson (NR) method. The corresponding Cramer-Rao lower bound (CRLB) on the localization errors is derived, which gives a lower bound on the variance of any unbiased estimator. Simulation results under different signal-to-noise-ratio (SNR) conditions show that the proposed hybrid Genetic Algorithm-Newton-Raphson (GA-NR) improves the accuracy and efficiency of the optimal solution compared to the regular GA.

Ključne reči

Reference

Antoniou, A., Lu, W. (2007) Practical Optimization: Algorithms and Engineering Applications. NY, USA: Springer Science
Chalise, B.K., Zhang, Y.D., Amin, M.G., Himed, B. (2014) Target localization in a multi-static passive radar system through convex optimization. Signal Processing, 102: 207-215
Figueiras, J., Frattasi, S. (2010) Mobile Positioning and Tracking. Chichester, UK: Wiley-Blackwell
Goldberg, D.E., Holland, J.H. (1988) Genetic Algorithms and Machine Learning. Machine Learning, 3(2/3): 95-99
Laaraiedh, M., Avrillon, S., Uguen, B. (2012) Cramer-Rao Lower Bounds for Nonhybrid and Hybrid Localisation Techniques in Wireless Networks. Transactions on Emerging Telecommunications Technologies, Vol. 23, No. 3, pp. 268-280
Simić, M.I., Pejović, P.V. (2009) A comparison of three methods to determine mobile station location in cellular communication systems. European Transactions on Telecommunications, 20(8): 711-721
Venkataraman, P. (2009) Applied Optimization with MATLAB Programming. West Sussex, UK: John Wiley and Sons
Wang, J., Guo, J. (2016) Research on the base station calibration of multi-station and time-sharing measurement based on hybrid genetic algorithm. Measurement, 94: 139-148
Wang, W., Ma, H., Wang, Y., Fu, M. (2015) Performance analysis based on least squares and extended Kalman filter for localization of static target in wireless sensor networks. Ad Hoc Networks, 25: 1-15
Yu, K., Montillet, J., Rabbachin, A., Cheong, P., Oppermann, I. (2006) UWB location and tracking for wireless embedded networks. Signal Processing, 86(9): 2153-2171