Metrika članka

  • citati u SCindeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:2
članak: 2 od 6  
Back povratak na rezultate
Scientific Technical Review
2014, vol. 64, br. 2, str. 21-26
jezik rada: engleski
vrsta rada: neklasifikovan
objavljeno: 20/12/2015
Creative Commons License 4.0
Višeciljna fazi optimizacija veličine i položaja piezoelektričnih aktuatora i senzora za upravljanje vibracijama bazirana na optimizaciji rojem čestica (deo 1: teorijski model)
aUniverzitet u Beogradu, Mašinski fakultet
bTechnical Test Center, Belgrade

Sažetak

Određivanje veličine i položaja piezoelektričnih aktuatora i senzora za aktivno upravljanje vibracijama savitljivih struktura obično je bazirano na maksimalnoj efikasnosti upravljanja i postizanja maksimalnog izlaza za modove vibracija od interesa. Integracija piezoelektričnih delova utiče na masu i dinamičke performanse bazične strukutre. Ovo je prvi deo istraživanja koje predstavlja teorijski razvoj višeciljne fazi optimizacione tehnike za određivanje položaja i veličine piezoelektričnih aktuatora i senzora na tankozidnoj kompozitnoj gredi. Kriterijumi optimizacije za određivanje optimalne veličine i položaja piezoelektričnih aktuatora i senzora zasnivaju se na stepenu upravljivosti upravljanih modova. Procedura optimizacije obuhvata ograničenje promene prvobitnih dinamičkih karakteristika i ograničenje u porastu mase. Pseudociljna funkcija, zasnovana na teoriji fazi skupova, daje izraz za globalnu ciljnu funkciju eliminišući upotrebu težinskih koeficijenata i kaznenih funkcija. Optimizacija rojem čestica je upotrebljena za nalaženje optimalne konfiguracije.

Ključne reči

Reference

Bellman, R.E., Zadeh, L.A. (1970) Decision-Making in a Fuzzy Environment. Management Science, 17(4): B-141-B-164
Bruant, I., Coffignal, G., Lene, F., Verge, M. (2001) A methodology for determination of piezoelectric actuator and sensor location on beam structures. Journal of Sound and Vibration, 243(5): 861-882
Bruant, I., Gallimard, L., Nikoukar, S. (2010) Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm. Journal of Sound and Vibration, 329(10): 1615-1635
Dhuri, K.D., Seshu, P. (2006) Piezo actuator placement and sizing for good control effectiveness and minimal change in original system dynamics. Smart Materials and Structures, 15(6): 1661-1672
Frecker, M. (2003) Recent Advances in Optimization of Smart Structures and Actuators. Journal of Intelligent Materials Systems and Structures, 14(4): 207-216
Gawronski, W. (2000) Simultaneous Placement of Actuators and Sensors. u: 18th International Modal Analysis Conference, IMAC, XVIII, pp. 1474-1478
Gupta, V., Sharma, M., Thakur, N. (2010) Optimization Criteria for Optimal Placement of Piezoelectric Sensors and Actuators on a Smart Structure: A Technical Review. Journal of Intelligent Material Systems and Structures, 21(12): 1227-1243
Hac, A., Liu, L. (1993) Sensor And Actuator Location In Motion Control Of Flexible Structures. Journal of Sound and Vibration, 167(2): 239-261
Halim, D., Moheimani, S.O.R. (2003) An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate. Mechatronics, 13(1): 27-47
Heyliger, N.D., Reddy, N. (1988) A higher order beam finite element for bending and vibration problems. Journal of Sound and Vibration, 126(2): 309-326
Jha, A. K., Inman, D.J. (2003) Optimal Sizes and Placements of Piezoelectric Actuators and Sensors for an Inflated Torus. Journal of Intelligent Materials Systems and Structures, 14(9): 563-576
Jin, Y. X., Cheng, H.Z., Yan, J. Y., Zhang, L. (2007) New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electric Power Systems Research, 77(3-4): 227-233
Kennedy, J., Everhart, R.C. (1995) Particle swarm optimization. u: Proceedings of the IEEE international conference on neural networks, Vol. 4, pp. 1942-1948
Kumar, R.K., Narayanan, S. (2008) Active vibration control of beams with optimal placement of sensor/actuator pairs. Smart Materials and Structures, Vol. 17, No. 5
Moita, J.M.S., Correia, V.M.F., Martins, P.G., Soares, C.M.M., Soares, C.A.M. (2006) Optimal design in vibration control of adaptive structures using a simulated annealing algorithm. Composite Structures, Vol. 79, pp. 79-87
Montazeri, A., Poshtan, J., Yousefi-Koma, A. (2008) The use of ‘particle swarm’ to optimize the control system in a PZT laminated plate. Smart Materials and Structures, 17(4): 045027
Perez, R.E., Behdinan, K. (2007) Particle swarm approach for structural design optimization. Computers & Structures, 85(19-20): 1579-1588
Preumont, A. (2002) Vibration control of Active Structures: An Introduction. USA: Kluwer Academic Publishers, 2nd ed
Tarapada, R., Chakraborty, D. (2009) Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm. Journal of Sound and Vibration, 319(1-2): 15-40
Wang, Q., Wang, C.M. (2001) A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures. Journal of Sound and Vibration, 242(3): 507-518
Wang, S.Y., Quek, S.T., Ang, K.K. (2001) Vibration control of smart piezoelectric composite plates. Smart Materials and Structures, 10(4): 637-644
Zhao, T., Wang, X. (2010) A Multi-objective Fuzzy Optimization Method of Resource Input Based on Genetic Algorithm. World Academy of Science, Engineering and Technology, Issue 45
Zorić, N., Simonović, A., Mitrović, Z., Stupar, S. (2012) Optimal vibration control of smart composite beams with optimal size and location of piezoelectric sensing and actuation. Journal of Intelligent Material Systems and Structures, 24(4): 499-526