Metrika članka

  • citati u SCindeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:1
članak: 3 od 6  
Back povratak na rezultate
FME Transactions
2012, vol. 40, br. 1, str. 1-9
jezik rada: engleski
vrsta rada: neklasifikovan
objavljeno: 05/09/2012
Creative Commons License 4.0
Višeciljna fazi optimizacija veličine i položaja piezoelektričnih aktuatora i senzora
Univerzitet u Beogradu, Mašinski fakultet

e-adresa: nzoric@mas.bg.ac.rs

Projekat

Istraživanje i razvoj savremenih pristupa projektovanja kompozitnih lopatica rotora visokih performansi (MPNTR - 35035)
Održivost i unapređenje mašinskih sistema u energetici i transportu primenom forenzičkog inženjerstva, eko i robust dizajna (MPNTR - 35006)

Sažetak

Ovaj rad predstavlja višeciljnu fazi optimizaciju veličine i položaja piezoelektričnih aktuatora i senzora na tankozidu kompozitnu gredu za aktivno upravljanje vibracija koristeći stepen upravljivosti (DC) kontrolisanih modova kao kriterijum optimizacije. Proces optimizacije je izvršen uz ograničenje promene prvobitnih dinamičkih karakteristika, uključujući ograničenje u porastu mase, upotrebljavajući ili zanemarujući ograničenja stepena upravljivosti rezidualnih modova za redukciju 'spillover' efekta. Pseudociljne funkcije izvedene na bazi teorije fazi skupova na jedinstven način definišu globalne funkcije cilja eliminišući upotrebu kaznenih funkcija. Problem je definisan upotrebom metode konačnih elemenata bazirane na 'TSD' teoriji. 'Particle Swarm' optimizacija je upotrebljena za nalaženje optimalne konfiguracije. Nekoliko numeričkih primera je prikazano za slučaj konzole.

Ključne reči

Reference

Ballas, R.G. (2007) Piezoelectric multilayer beam bending actuators static and dynamic behavior and aspects of sensor integration. Berlin: Springer
Bellman, R.E., Zadeh, L.A. (1971) Decision-making in a fuzzy environment. Management Science, 17, 141-B164
Bruant, I., Coffignal, G., Lene, F., Verge, M. (2001) A methodology for determination of piezoelectric actuator and sensor location on beam structures. Journal of Sound and Vibration, 243(5): 861-882
Bruant, I., Gallimard, L., Nikoukar, S. (2010) Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm. Journal of Sound and Vibration, 329(10): 1615-1635
Frecker, M.I. (2003) Recent advances in optimization of smart structures and actuators. Journal of Intelligent Material Systems and Structures, 14(4-5): 207-216
Gawronski, W. (2000) Simultaneous placement of actuators and sensors. u: 18th International Modal Analysis Conference, 07- 10.02.2000, San Antonio, USA, Proceedings, pp. 1474-1478
Gupta, V., Sharma, M., Thakur, N. (2010) Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review. Journal of Intelligent Material Systems and Structures, 21(12): 1227-1243
Hać, A., Liu, L. (1993) Sensor and actuator location in motion control of flexible structures. Journal of Sound and Vibration, 167(2): 239-261
Halim, D., Reza, M.S.O. (2003) An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate. Mechatronics, 13(1): 27-47
Heyliger, P.R., Reddy, J.N. (1988) A higher order beam finite element for bending and vibration problems. Journal of Sound and Vibration, 126(2): 309-326
Jin, Y-X., Cheng, H-Z., Yan, J.Y. (2007) New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electric Power Systems Research, 77 (3-4): 227-233
Kennedy, J., Eberhart, R.C. (1995) Particle swarm optimization. u: Proc. IEEE Int. Neural Networks, Perth, Australia, str. 1942-1948, Nov
Perez, R.E., Behdinan, K. (2007) Particle swarm approach for structural design optimization. Computers & Structures, 85(19-20): 1579-1588
Preumont, A. (2002) Vibration control of active structures: An introduction. Dordrecht, itd: Kluwer Academic Publisher
Ramesh, K.K., Narayanan, S. (2007) The optimal location of piezoelectric actuators and sensors for vibration control of plates. Smart Materials and Structures, 16(6): 2680-2691
Roy, T., Chakraborty, D. (2009) Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm. Journal of Sound and Vibration, 319(1-2): 15-40
Simões, M.J.M., Franco, C.V.M., Martins, P.G., Mota, S.C.M., Mota, S.C.A. (2006) Optimal design in vibration control of adaptive structures using a simulated annealing algorithm. Composite Structures, 75(1-4): 79-87
Wang, Q., Wang, C.M. (2001) A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures. Journal of Sound and Vibration, 242(3): 507-518
Wang, S.Y., Quek, S.T., Ang, K.K. (2001) Vibration control of smart piezoelectric composite plates. Smart Materials and Structures, 10(4): 637-644
Zhao, T., Wang, X. (2010) A multi-objective fuzzy optimization method of resource input based on genetic algorithm. World Academy of Science, Engineering and Technology, Vol. 69, No. 45, pp. 710-714