Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:1
članak: 2 od 149  
Back povratak na rezultate
Journal of Agricultural Sciences (Belgrade)
2019, vol. 64, br. 3, str. 239-253
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.2298/JAS1903239S

Creative Commons License 4.0
Promene mikrobijalne biomase i prinosa zrna varijeteta pirinča kao odgovor na naizmenični vlažni i suvi vodni režim u unutrašnjoj dolini prelaznog pojasa savane
aFederal University of Agriculture, Abeokuta (FUNAAB), Department of Soil Science and Land Management, Abeokuta, Ogun State, Nigeria
bFUNAAB, Department of Plant Physiology and Crop Production, Abeokuta, Ogun State, Nigeria
cFUNAAB, Department of Microbiology, Abeokuta, Ogun State, Nigeria

e-adresa: soretireaa@funaab.edu.ng

Sažetak

U ovom istraživanju testirana je hipoteza da bi naizmenični vlažni i suvi (engl. alternate wet and dry - AWD) vodni režim mogao povećati ugljenik u mikrobnoj biomasi (engl. soil microbial biomass carbon - MBC), azot u mikrobnoj biomasi (engl. microbial biomass nitrogen - MBN) i ukupan broj mikroorganizama u zemljištu. Varijacije u vrednostima MBC, MBN i prinosu zrna mogu biti posledica razlika u varijantama u prelaznom pojasu savane. Ogledi (u sudovima i na polju) sprovedeni su na Poljoprivrednom federalnom univerzitetu, u Abeokuti (geografska širina 7° 12' do 7° 20' N i geografska dužina 3° 20' do 3° 28' E), u Nigeriji u 2015. godini. Kod oba ogleda, tretmani su se sastojali od vodnih režima (neprekidno plavljenje [kontrola] i režim AWD uveden kod varijeteta pirinča plavljenih područja [NERICA® L-19] i varijeteta Ofada [lokalni kontrolni varijetet]) u fazi vegetativnog rasta u toku tri ciklusa. Dizajn kod oba ogleda podrazumevao je potpuno randomizirani odnosno randomiziran potpuni blok dizajn za ogled u sudovima i poljski ogled, u tri ponavljanja. U ogledu u sudovima, vrednosti MBC i MBN bile su značajno više kod režima AWD nego kod neprekidno plavljenog zemljišta, naročito na početku ciklusa režima AWD. Ovo je možda bilo uzrok da hranljive materije održe poboljšani učinak pirinča plavljenih područja pri režimu AWD. Suprotan obrazac je uočen na polju u trećem ciklusu. Varijetet pirinča Ofada imao je značajno viši broj mikroorganizama i MBC (1. ciklus) nego NERICA L-19. Ipak, suprotan obrazac je uočen kod MBC (2. i 3. ciklus) i MBN (1. ciklus). Sastav rizodepozicije i vreme ciklusa bi mogli objasniti uočene razlike među varijetetima u pogledu vrednosti MBC i MBN.

Ključne reči

Reference

Novododat članak: provera, normiranje i linkovanje referenci u toku.
Allison, L. (1965). Organic carbon. In C.A Black (Ed.), Methods of soil analysis. Part 2, (pp. 1307-1378). Madison: American Society of Agronomy
Belder, P., Bouman, B.A.M., Cabangon, R., Guoan, L., Quilang, E.J.P., Yuanhua, L., & Tuong, T.P. (2004). Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management, 65 (3), 193-210
Bouyoucos, G. (1962). Hydrometer method improved for making particle size analysis of soil. Agronomy Journal, 54, 464-465
Bray, R., & Kurtz, L. (1945). Determination of total, organic and available forms of phosphorus in soil. Soil Science, 59, 39-45
Brookes, P.C., Landman, A., Pruden, G., & Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17 (6), 837-842
Chepkwony, C.K., Haynes, R.J., Swift, R.S., & Harrison, R. (2001). Mineralization of soil organic P induced by drying and rewetting as a source of plant-available P in limed and unlimed samples of an acid soil. Plant and Soil, 234 (1), 83-90
Dare, M.O., Soremekun, J.A., Inana, F.O., Adenuga, O.S., & Ajiboye, G.A. (2014). Microbial Biomass Carbon and Nitrogen Under Different Maize Cropping Systems. In Soil Carbon (pp. 305-311). Springer
Fierer, N., & Schimel, J.P. (2002). Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 34 (6), 777-787
Gordon, H., Haygarth, P.M., & Bardgett, R.D. (2008). Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biology and Biochemistry, 40 (2), 302-311
Grayston, S.J., Wang, S., Campbell, C.D., & Edwards, A.C. (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry, 30 (3), 369-378
Hartmann, A., Schmid, M., Van Tuinen, D., & Berg, G. (2009). Plant-driven selection of microbes. Plant and Soil, 321 (1-2), 235-257
Jackson, M. (1962). Soil chemical analysis. New Delhi: Prentice Hall of India Pvt, Ltd
Jarvis, P., Rey, A., Petsikos, C., Wingate, L., Rayment, M., Pereira, J., Banza, J., David, J., Miglietta, F., Borghetti, M., Manca, G., & Valentini, R. (2007). Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the "Birch effect". Tree Physiology, 27 (7), 929-940
Jenkinson, D.S., & Ladd, J.N. (1981). Microbial biomass in soil: measurement and turnover. Soil Biochemistry. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=US19820787384
Jones, M.P. (1997). Interspecific hybridization: progress and prospects. WARDA
Knox, O.G., Gupta, V.V., & Lardner, R. (2014). Field evaluation of the effects of cotton variety and GM status on rhizosphere microbial diversity and function in Australian soils. Soil Research, 52 (2), 203-215
Loureiro, D.C., De-Polli, H., Ceddia, M.B., & Aquino, A.M.de. (2010). Spatial variability of microbial biomass and organic matter labile pools in a haplic planosol soil. Bragantia, 69, 85-95
McLean, E.O. (1982). Soil pH and lime requirement. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methods of soil an2), 199-224
Mishra, A., & Salokhe, V.M. (2011). Rice root growth and physiological responses to SRI water management and implications for crop productivity. Paddy and Water Environment, 9 (1), 41-52
Murphy, J., & Riley, J.P. (1962). A Modified Single Solution Method for Determination of Phosphate in Natural Waters. Analytica Chimica Acta, 27, 31-36
Payne, R., Murray, D., Harding, S., Baird, D., & Soutar, D. (2009). Genstat for Windows (12th Edition) Introduction. Hemel Hempstead: VSN International
Qu, X.H., & Wang, J.G. (2008). Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Applied Soil Ecology, 39 (2), 172-179
Rangel-Vasconcelos, L.G.T., Zarin, D.J., Oliveira, F. de A., Vasconcelos, S.S., Carvalho, C.J.R. de & Santos, M.M. de L.S. (2015). Effect of water availability on soil microbial biomass in secondary forest in eastern Amazonia. Revista Brasileira de Ciência Do Solo, 39 (2), 377-384
Roberson, E.B., & Firestone, M.K. (1992). Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Applied and Environmental Microbiology, 58 (4), 1284-1291
Silva, A.P., Babujia, L.C., Franchini, J.C., Souza, R.A., & Hungria, M. (2010). Microbial biomass under various soil-and crop-management systems in short-and long-term experiments in Brazil. Field Crops Research, 119 (1), 20-26
Tian, J., Dippold, M., Pausch, J., Blagodatskaya, E., Fan, M., Li, X., & Kuzyakov, Y. (2013). Microbial response to rhizodeposition depending on water regimes in paddy soils. Soil Biology and Biochemistry, 65, 195-203
Turner, B.L., & Haygarth, P.M. (2001). Biogeochemistry: phosphorus solubilization in rewetted soils. Nature, 411 (6835), 258-258
Uphoff, N., & Randriamiharisoa, R. (2002). Reducing water use in irrigated rice production with the Madagascar System of Rice Intensification (SRI). In Bouman, B.A., Hengsdijk, H., Hardy, B., Bindraban, P.S., Thuong, T.P., and Ladha, J.K. (Eds.), Water-Wise Rice Production (pp. 71-87). Proceedings of the International Workshop on Waterwise rice Production, Los Banos, Philippines
Van der Hoek, W., Sakthivadivel, R., Renshaw, M., Silver, J.B., Birley, M.H., & Konradsen, F. (2001). Alternate wet/dry irrigation in rice cultivation: a practical way to save water and control malaria and Japanese encephalitis? (Vol. 47). IWMI
Vance, E.D., Brookes, P.C., & Jenkinson, D.S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19 (6), 703-707
Xu, W., Wang, Z., & Wu, F. (2015). The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon. Frontiers in Microbiology, 6. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555026
Yang, J., & Zhang, J. (2010). Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany, 61 (12), 3177-3189