Akcije

Serbian Journal of Electrical Engineering
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:19
  • preuzimanja u poslednjih 30 dana:14

Sadržaj

članak: 9 od 34  
Back povratak na rezultate
2015, vol. 12, br. 1, str. 53-67
Hill's and Huxley's muscle models: Tools for simulations in biomechanics
(naslov ne postoji na srpskom)
aUniverzitet u Beogradu, Elektrotehnički fakultet
bFriedrich-Alexander Universität, Erlangen-Nürnberg, Germany
cBioMedical Instrumentation & Technologies Laboratory, School of Electrical Engineering, Belgrade + Tecnalia Serbia Ltd, Belgrade

e-adresakostaj@etf.bg.ac.rs, jovanavranic@gmail.com, nadica.miljkovic@etf.bg.ac.rs
Projekat:
Istraživanje i razvoj ambijentalno inteligentnih servisnih robota antropomorfnih karakteristika (MPNTR - 35003)
Efekti asistivnih sistema u neurorehabilitaciji: oporavak senzorno-motornih funkcija (MPNTR - 175016)

Ključne reči: biomechanics; musculoskeletal modeling; computer simulation; energy distribution
Sažetak
(ne postoji na srpskom)
Numerous mathematical models of human skeletal muscles have been developed. However, none of them is adopted as a general one and each of them is suggested for some specific purpose. This topic is essential in humanoid robotics, since we firstly need to understand how human moves and acts in order to exploit human movement patterns in robotics and design human like actuators. Simulations in biomechanics are intensively used in research of locomotion, safe human-robot interaction, development of novel robotic actuators, biologically inspired control algorithms, etc. This paper presents two widely adopted muscle models (Hill's and Huxley's model), elaborates their features and demonstrates trade-off between their accuracy and efficiency of computer simulations. The simulation setup contains mathematical representation of passive muscle structures as well as mathematical model of an elastic tendon as a series elastic actuation element. Advanced robot control techniques point out energy consumption as one of the key issues. Therefore, energy store and release mechanism in elastic elements in both tendon and muscle, based on the simulation models, are considered.
Reference
Ariga, Y., Pham, H.T.T., Uemura, M., Hirai, H., Miyazaki, F. (2012) Novel equilibrium-point control of agonist-antagonist system with pneumatic artificial muscles. u: IEEE International Conference on Robotics and Automation, pp. 1470 −1759
Astley, H.C., Roberts, T.J. (2011) Evidence for a vertebrate catapult: elastic energy storage in the plantaris tendon during frog jumping. Biology Letters, 8(3): 386-389
Audu, M.L., Davy, D.T. (1985) The influence of muscle model complexity in musculoskeletal motion modeling. J Biomech Eng, 107(2): 147-57
Bar-Cohen, Y., ur. (2004) Electroactive polymer (EAP) actuators as artificial muscles reality, potential and challenges. Spie Press, Mar
Bauer, F., Fidlin, A., Seemann, W. (2014) Energy efficient bipedal robots walking in resonance. ZAMM - Journal of Applied Mathematics and Mechanics, 94(11): 968-973
Biewener, A.A. (1998) Muscle-tendon stresses and elastic energy storage during locomotion in the horse. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 120(1): 73-87
Daerden, F., Lefeber, D. (2002) Pneumatic artificial muscles actuators for robotic and automation. Eur J Mech Environ Eng, 47: 10-21
Denoth, J. (1985) The Dynamics of Hill’s Muscle Model — Considerations and Applications. u: Biomechanics: Current Interdisciplinary Research, : 617-622
Đorđević, S., Tomažič, S., Narici, M., Pišot, R., Meglič, A. (2014) In-Vivo Measurement of Muscle Tension: Dynamic Properties of the MC Sensor during Isometric Muscle Contraction. Sensors, 14(9): 17848-17863
Grebenstein, M., van der Smagt, P. (2008) Antagonism for a Highly Anthropomorphic Hand–Arm System. Advanced Robotics, 22(1): 39-55
Hill, A.V. (1938) The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society, vol. 8, br. 126, str. 136-195
Hunter, I.W., Lafontaine, S. (1992) A comparison of muscle with artificial actuators. u: IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, Jun, pp.178 −185
Huxley, A.F. (1958) Muscle structure and theories of contraction. Progress in Biophysics and Biophysics Chemistry, Vol. 7, pp. 257 −318
Jovanovic, K., Potkonjak, V., Holland, O. (2014) Dynamic modelling of an anthropomimetic robot in contact tasks. Advanced Robotics, Vol. 28, No. 11, pp. 793 −806
Latash, M. (1998) Neurophysiological basis of movement. Champaign, IL: Human Kinetics
Nakanishi, Y., Ohta, S., Shirai, T., Asano, Y., Kozuki, T., Kakehashi, Y., Mizoguchi, H., Kurotobi, T., Motegi, Y., Sasabuchi, K. (2013) Design Approach of Biologically-Inspired Musculoskeletal Humanoids. International Journal of Advanced Robotic Systems, 10: 1-13
Potkonjak, V., Svetozarevic, B., Jovanovic, K., Holl, O. (2011) The Puller-Follower Control of Compliant and Noncompliant Antagonistic Tendon Drives in Robotic Systems. International Journal of Advanced Robotic Systems, : 1
Rack, P.M., Ross, H.F., Thilmann, A.F., Walters, D.K. (1983) Reflex responses at the human ankle: the importance of tendon compliance. Journal of Physiology, 344(1): 503-524
Reis, M., Iida, F. (2014) An Energy-Efficient Hopping Robot Based on Free Vibration of a Curved Beam. IEEE/ASME Transactions on Mechatronics, 19(1): 300-311
Schneck, D. (1992) Mechanics of muscle. New York, USA: New York University Press, 2nd edition
Secord, T.W. (2010) Design and application of a cellular, piezoelectric, artificial muscle actuator for biorobotic systems, Dept. of Mechanical Engineering. Boston, USA: Massachusetts Institute of Technology, Massachusetts, PhD thesis
Taniguchi, H. (2013) Flexible Artificial Muscle Actuator Using Coiled Shape Memory Alloy Wires. APCBEE Procedia, 7: 54-59
Vardy, A.N. (2012) Parameter estimation of the Huxley cross-bridge model in humans. u: IEEE Annual International Conference on Engineering and Biology Society (EMBC), Aug. 28−Sept. 1, San Diego, CA, USA, pp. 4827 −4830
Winters, J.M., Stark, L. (1987) Muscle models: What is gained and what is lost by varying model complexity. Biological Cybernetics, 55(6): 403-420
Winters, J.M., Stark, L. (1988) Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints. Journal of Biomechanics, 21(12): 1027-1041
Wittmeier, S., Alessandro, C., Bascarevic, N., Dalamagkidis, K., Devereux, D., Diamond, A., Jäntsch, M., Jovanovic, K., Knight, R., Marques, H.G. (2013) Toward Anthropomimetic Robotics: Development, Simulation, and Control of a Musculoskeletal Torso. Artificial Life, 19(1): 171-193
Yamaguchi, G. (1990) Performing whole body simulation of gait with 3d dynamic muskuloskeletal models. u: Multiple Muscle Systems: Miomechanics and Movement Organization, New York: Springer-Verlag
Zahalak, G.I. (1981) A distribution-moment approximation for kinetic theories of muscular contraction. Mathematical Biosciences, 55(1-2): 89-114
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.2298/SJEE1501053J
objavljen u SCIndeksu: 24.07.2015.