Metrika članka

  • citati u SCindeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:1
članak: 10 od 34  
Back povratak na rezultate
Vojnosanitetski pregled
2014, vol. 71, br. 5, str. 451-461
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.2298/VSP121003034D


Implantatna stabilnost i nivo marginalne kosti kod cirkonijum endoosealnih implantata sa mikrostrukturiranom površinom - tromesečna eksperimentalna studija na psima
aUniversity of Murcia, Faculty of Medicine and Dentistry, Murcia, Spain
bUniverzitet u Beogradu, Stomatološki fakultet
cVojnomedicinska akademija
dDental School, University of Chieti-Pescara, Chieti, Italy
eFaculty of Odontology, Göeteborg University, Göeteborg, Sweden

e-adresa: maleksa64@gmail.com

Sažetak

Uvod/Cilj. Modifikacija površine implantata može uticati na njegovu mehaničku stabilnost kao i na dinamiku i kvalitet periimplantatnog koštanog zarastanja. Cilj ove tromesečne eksperimentalne studije na psima bio je da se ispita stabilnost implantata, nivo marginalne kosti i odgovor koštanog tkiva na cirkonijum endoosealne implantate sa dve intraosealne površine mikrostrukturirane laserom u poređenju sa peskiranim cirkonijum implantatima čija površina nije mikrostrukturirana kao i sa titanijum implantatima čije su površine peskirane i nagrižene visokom temperaturom. Metode. Karakterizacija površine implantata učinjena je optičkom interferometrijskom profilometrijom i analizom energetskog spektra pri difrakciji X-zračenja. Ukupno 96 implantata (prečnika 4 mm i dužine 10 mm) ugrađeno je nasumično i obostrano u donju vilicu kod 12 pasa (lisičara) i podeljeno u četiri grupe po 24: kontrolna (titanijum implantati); grupa A (peskirani cirkonijum implantati); grupa B (peskirani cirkonijum implantati sa mikrokanalima u koronarnoj trećini); grupa C (peskirani cirkonijum implantati sa mikrokanalima duž cele površine). Svi implantati su odmah opterećeni. Meren je obrtni momenat pri ugradnji implantata, vrednosti periotesta, radiografski nivo marginalne kosti i obrtni moment za uklanjanje implantata tokom tromesečnog perioda praćenja. Međuspoj kosti i implantata iz svake grupe ispitivan je kvalitativnom skenirajućom elektronskom mikroskopijom (SEM). Rezultati. Veći obrtni momenat zabeležen je pri ugradnji implantata kod grupe C i kontrolne grupe (p < 0,05). U ispitivanom vremenskom periodu, vrednosti periotesta uvećavale su se srazmerno obimu mikrostrukturiranja površine i to: grupa C > kontrolna grupa > grupa B > grupa A (p < 0,05). Radiografskom analizom utvrđen je minimalni gubitak marginalne kosti u trećem mesecu praćenja oko cirkonijum implantata sa mikrokanalima (grupa B i C) i kontrola u poređenju sa implantatima grupe A (p < 0,05). Vrednosti obrtnog momenta za uklanjanje implantata vremenom su se uvećavale u svim grupama na sledeći način: grupa C > kontrolna grupa > grupa B > grupa A (p < 0,05). Kod implantatnih površina grupa B i C, SEM je pokazala dodatni rast koštanog tkiva unutar mikrokanala koji odgovara njihovom obliku i pravcu. Zaključak. Formiranje mikrokanala duž cele intraosealne površine cirkonijum endoosealnih implantata povećava primarnu i sekundarnu implantatnu stabilnost, podstiče urastanje koštanog tkiva i održava nivo marginalne kosti.

Ključne reči

Reference

Abrahamsson, I., Berglundh, T. (2006) Tissue characteristics at microthreaded implants: an experimental study in dogs. Clin Implant Dent Relat Res, 8(3): 107-13
Albrektsson, T., Sennerby, L., Wennerberg, A. (2008) State of the art of oral implants. Periodontol., 47(2000):
Aloy-Prósper, A., Maestre-Ferrín, L., Peñarrocha-Oltra, D., Peñarrocha-Diago, M. (2011) Marginal bone loss in relation to the implant neck surface: an update. Med Oral Patol Oral Cir Bucal., 16(3): e365-8
Andreiotelli, M., Wenz, H.J., Kohal, R. (2009) Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res, 20 Suppl 4: 32-47
Chang, P., Lang, N.P., Giannobile, W.V. (2010) Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants. Clin Oral Implants Res, 21(1): 1-12
Davies, J.E. (1998) Mechanisms of endosseous integration. Int J Prosthodont., 11(5): 391-401
Delgado-Ruíz, R.A., Calvo-Guirado, J.L., Moreno, P., Guardia, J., Gomez-Moreno, G., Mate-Sánchez, J.E., Ramirez-Fernández, P., Chiva, F. (2011) Femtosecond laser microstructuring of zirconia dental implants. J Biomed Mater Res B Appl Biomater, 96(1): 91-100
Faegh, S., Müftü, S. (2010) Load transfer along the bone-dental implant interface. Journal of biomechanics, 43(9): 1761-70
Ferguson, S.J., Langhoff, J.D., Voelter, K., Rechenberg, B., Scharnweber, D., Bierbaum, S., Schnabelrauch, M., Kautz, A.R., Frauchiger, V.M., Mueller, T.L., Lenthe, H.G., Schlottig, F. (2008) Biomechanical comparison of different surface modifications for dental implants. Int J Oral Maxillofac Implants, 23(6): 1037-46
Gahlert, M., Gudehus, T., Eichhorn, S., Steinhauser, E., Kniha, H., Erhardt, W. (2007) Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Clin Oral Implants Res, 18(5): 662
Gahlert, M., Röhling, S., Wieland, M., Sprecher, C.M., Kniha, H., Milz, S. (2009) Osseointegration of zirconia and titanium dental implants: a histological and histomorphometrical study in the maxilla of pigs. Clin Oral Implants Res, 20(11): 1247-53
Gedrange, T., Hietschold, V., Mai, R., Wolf, P., Nicklisch, M., Harzer, W. (2005) An evaluation of resonance frequency analysis for the determination of the primary stability of orthodontic palatal implants. A study in human cadavers. Clin Oral Implants Res, 16(4): 425-31
Geng, J.P., Ma, Q.S., Xu, W., Tan, K.B.C., Liu, G.R. (2004) Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil, 31(3): 233-9
Hermann, J.S., Schoolfield, J.D., Schenk, R.K., Buser, D., Cochran, D.L. (2001) Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible. Journal of periodontology, 72(10): 13
Hoffmann, O., Angelov, N., Zafiropoulos, G., Andreana, S. (2012) Osseointegration of zirconia implants with different surface characteristics: an evaluation in rabbits. Int J Oral Maxillofac Implants, 27(2): 352
Jung, Y.C., Han, C.H., Lee, K.W. (1996) A 1-year radiographic evaluation of marginal bone around dental implants. International journal of oral & maxillofacial implants, 11(6): 811
Klein, M.O., Bijelic, A., Toyoshima, T., Götz, H., Koppenfels, R.L., Al-Nawas, B., Duschner, H. (2010) Long-term response of osteogenic cells on micron and submicron-scale-structured hydrophilic titanium surfaces: sequence of cell proliferation and cell differentiation. Clin Oral Implants Res, 21(6): 642-9
Kohal, R.J., Wolkewitz, M., Hinze, M., Han, J., Bächle, M., Butz, F. (2009) Biomechanical and histological behavior of zirconia implants: an experiment in the rat. Clin Oral Implants Res, 20(4): 333-9
Lamers, E., Horssen, R., Riet, J., Delft, C.F., Luttge, R., Walboomers, X.F., Jansen, J.A. (2010) The influence of nanoscale topographical cues on initial osteoblast morphology and migration. European cells & materials, 20: 329-43
Lamers, E., Walboomers, F.X., Domanski, M., Riet, J., Delft, F.C.M.J.M., Luttge, R., Winnubst, L.A.J.A., Gardeniers, H.J.G.E., Jansen, J.A. (2010) The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials, 31(12): 3307-16
Langhoff, J.D., Voelter, K., Scharnweber, D., Schnabelrauch, M., Schlottig, F., Hefti, T., Kalchofner, K., Nuss, K., Rechenberg, B. (2008) Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: a study in sheep. International journal of oral and maxillofacial surgery, 37(12): 1125-32
Lee, D., Choi, Y., Park, K., Kim, C., Moon, I. (2007) Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res, 18(4): 465
Lee, J., Sieweke, J.H., Rodriguez, N.A., Schüpbach, P., Lindström, H., Susin, C., Wikesjö, U.M.E. (2009) Evaluation of nano-technology-modified zirconia oral implants: a study in rabbits. Journal of clinical periodontology, 36(7): 610-7
Loesberg, W.A., Riet, J., Delft, F.C.M.J.M., Schön, P., Figdor, C.G., Speller, S., Loon, J.J.W.A., Walboomers, X.F., Jansen, J.A. (2007) The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials, 28(27): 3944-51
Lu, J., Rao, M.P., MacDonald, N.C., Khang, D., Webster, T.J. (2008) Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta biomaterialia, 4(1): 192-201
Marotti, G., Zallone, A.Z., Ledda, M. (1976) Number, size and arrangement of osteoblasts in osteons at different stages of formation. Calcif Tissue Res., 21 (Suppl)
Martinez, H., Davarpanah, M., Missika, P., Celletti, R., Lazzara, R. (2001) Optimal implant stabilization in low density bone. Clin Oral Implants Res, 12(5): 423-32
Nevins, M., Nevins, M.L., Camelo, M., Boyesen, J.L., Kim, D.M. (2008) Human histologic evidence of a connective tissue attachment to a dental implant. Int J Periodontics Restorative Dent, 28(2): 111-21
Oliva, J., Oliva, X., Oliva, J.D. (2007) One-year follow-up of first consecutive 100 zirconia dental implants in humans: a comparison of 2 different rough surfaces. Int J Oral Maxillofac Implants, 22(3): 430
Pecora, G.E., Ceccarelli, R., Bonelli, M., Alexander, H., Ricci, J.L. (2009) Clinical evaluation of laser microtexturing for soft tissue and bone attachment to dental implants. Implant dentistry, 18(1): 57-66
Piconi, C., Maccauro, G. (1999) Zirconia as a ceramic biomaterial. Biomaterials, 20(1): 1-25
Pirker, W., Kocher, A. (2009) Immediate, non-submerged, root-analogue zirconia implants placed into single-rooted extraction sockets: 2-year follow-up of a clinical study. Int J Oral Maxillofac Surg, 38(11): 1127-32
Puckett, S., Pareta, R., Webster, T.J. (2008) Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int J Nanomedicine, 3(2): 229-41
Rocchietta, I., Fontana, F., Addis, A., Schupbach, P., Simion, M. (2009) Surface-modified zirconia implants: tissue response in rabbits. Clin Oral Implants Res, 20(8): 844-50
Rozé, J., Babu, S., Saffarzadeh, A., Gayet-Delacroix, M., Hoornaert, A., Layrolle, P. (2009) Correlating implant stability to bone structure. Clin Oral Implants Res, 20(10): 1140-5
Scarano, A., di Carlo, F., Quaranta, M., Piattelli, A. (2003) Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol, 29(1): 8-12
Sennerby, L., Dasmah, A., Larsson, B., Iverhed, M. (2005) Bone tissue responses to surface-modified zirconia implants: A histomorphometric and removal torque study in the rabbit. Clin Implant Dent Relat Res, 7(Suppl 1)
Shin, S., Han, D. (2010) Influence of a microgrooved collar design on soft and hard tissue healing of immediate implantation in fresh extraction sites in dogs. Clin Oral Implants Res, 21(8): 804-14
Weiner, S., Simon, J., Ehrenberg, D.S., Zweig, B., Ricci, J.L. (2008) The effects of laser microtextured collars upon crestal bone levels of dental implants. Implant dentistry, 17(2): 217-28
Zallone, A.Z. (1977) Relationships between shape and size of the osteoblasts and the accretion rate of trabecular bone surfaces. Anatomy and embryology, 152(1): 65-72