Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:6

Sadržaj

članak: 7 od 27  
Back povratak na rezultate
2021, vol. 26, br. 52, str. 183-193
Digitalization in the meat chain
(naslov ne postoji na srpskom)
Institut za higijenu i tehnologiju mesa, Beograd, Srbija

e-adresaivan.nastasijevic@inmes.rs
Projekat:
This study was supported by the Innovation Fund of the Republic of Serbia, Proof of Concept program, under the Contract (No. 161, dated September 9, 2020) on the implementation of the project "Development and Integration of Microfluidic Biosensors for Meat Safety Monitoring in the Farm-to-Slaughterhouse Continuum" - DIBMES (ID5524)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Institut za higijenu i tehnologiju mesa, Beograd) (MPNTR - 451-03-68/2020-14/200050)

Sažetak
Monitoring lanca snabdevanja mesom treba da se regularno sprovodi u cilju osiguranja bezbednosti proizvoda. Nedavni razvoj veštačke inteligencije, internet stvari i blokčejn tehnologija imaće izvanredan efekat na sistem proizvodnje i snabdevanja mesom u smislu unapređenja monitoringa i nadzora nad opasnostima u svim tačkama duž lanca mesa (primarna proizvodnja, klanje/obrada i prerada/distribucija/maloprodaja), u kontinuumu farma-maloprodaja, kao i obezbeđenja boljeg kvaliteta informacija ka potrošačima za donošenje informisanih odluka kada je u pitanju kupovina hrane. Kontinuumom lanca hrane "od farme do viljuške" treba da bude upravljano tako da se omogući odgovarajući nivo zaštite potrošača. To može da bude postignuto naučno baziranom ocenom rizika, što obuhvata informacije o prevalenci i koncentraciji glavnih opasnosti od značaja za javno zdravlje (epidemiološki indikatori) zoonotskog porekla (Salmonella, Campylobacter, Listeria monocytogenes, Yersinia, šigatoksin-produkujuća Escherichia coli/STEC) u svim modulima duž lanca hrane (mesa): farma - transport - klanica - prerada mesa - distribucija - maloprodaja - potrošači. Integracija digitalnih tehnologija u sistem upravljanja bezbednosti hrane ili sistem za osiguranje bezbednosti mesa omogućiće bolju sintezu informacija iz lanca hrane i harmonizovanih epidemioloških indikatora duž lanca mesa, od farme do maloprodaje (od dna ka vrhu) i obrnuto, od maloprodaje do farme (od vrha ka dnu). Digitalizacija lanca mesa će takođe povećati transparentnost i vidljivost svih aktera uključenih u proizvodnju, preradu, distribuciju i maloprodaju (farmera, subjekata u poslovanju hranom, nadležnih državnih organa, maloprodajnih sistema) i postaviti osnovu za međusobno upoređivanje kvaliteta proizvođača i maloprodajnih lanaca, kao i proaktivno učešće potrošača u definisanju buduće politike u hrani na nacionalnom i globalnom nivou.
Reference
Alexander, P., Moran, D., Rounsevell, M.D.A., Smith, P. (2013) Modelling the perennial energy crop market: the role of spatial diffusion. Journal of The Royal Society Interface, 10: 20130656
Almqvist, V., Berg, C., Hultgren, J. (2021) Reliability of remote post-mortem veterinary meat inspections in pigs using augmented-reality live-stream video software. Food Control, 125: 107940
Benjamin, M., Yik, S. (2019) Precision livestock farming in swine welfare: a review for swine practitioners. Animals, 9(4): 133
Berckmans, D. (2017) General introduction to precision livestock farming. Animal Frontiers, 7(1): 6-11
Blagojević, B., Nesbakken, T., Alvseike, O., Vågsholm, I., Antic, D., Johler, S., Houf, K., Meemken, D., Nastasijević, I., Vieira, P.M., Antunovic, B., Georgiev, M., Alban, L. (2021) Drivers, opportunities, and challenges of the European risk-based meat safety assurance system. Food Control, 124: 107870
Bohrer, B.M. (2017) Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends in Food Science & Technology, 65: 103-112
Burciaga-Robles, L.O., Holland, B.P., Step, D.I., Krehbiel, C.R., Mcmillen, G.I., Richards, C.J., Sims, L.E., Jeffers, J.D., Namjou, K., Mccann, P.J. (2009) Evaluation of breath biomarkers and serum haptoglobin concentration for diagnosis of bovine respiratory disease in heifers newly arrived at a feedlot. American Journal of Veterinary Research, 70(10): 1291-1298
Carni Sostenibili (2020) The bioactive compounds of the meat. https://www.carnisostenibili.it/en/the-bioactivecompounds-of-meat/, accessed on August 23, 2021
Ciuris, C., Lynch, H.M., Wharton, C., Johnston, C.S. (2019) A comparison of dietary protein digestibility, based on DIAAS scoring, in vegetarian and non-vegetarian athletes. Nutrients, 11: 3016
Cole, M.B., Augustin, M.A., Robertson, M.J., Manners, J.M. (2018) The science of food security. NPJ Science of Food, 2(14)
Corrin, T., Papadopoulos, A. (2017) Understanding the attitudes and perceptions of vegetarian and plant-based diets to shape future health promotion programs. Appetite, 109: 40-47
ECDC (2017) Surveillance of antimicrobial resistance in Europe -Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. Stockholm, ISBN 978-92-9498-279-7
EFSA (2011) Technical specifications on harmonised epidemiological indicators for public health hazards to be covered by meat inspection of swine. EFSA Journal, 9(10): 2371
EFSA (2013) Scientific Opinion on the public health hazards to be covered by inspection of meat (solipeds). EFSA Journal, 11(6): 3263
EFSA (2020) Pathogenicity assessment of Shiga toxinproducing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA Journal, 18(1): 5967
EFSA (2019) The European Union One Health 2018 Zoonoses Report. EFSA Journal, 17(12): 5926
el Idrisi, A.H., Dhingra, M., Larfaoui, F., Johnson, A., Pinto, J., Sumption, K. (2021) Digital technologies and implications for Veterinary Services. Revue scientifique et technique (International Office of Epizootics), 40(2): 1-24
Euromonitor (2020) Digital Traceability: A Future of Transparency in Food Sourcing. https://www.euromonitor.com/digital-traceability-afuture-of-transparency-in-food-sourcing/report, accessed on September 24, 2021
European Commission (2014) Commission regulation (EC) No 218/2014 of 7 March 2014 amending Annexes to Regulations (EC) No 853/2004 and (EC) No 854/2004 of the European Parliament and of the Council and Commission Regulation (EC) No 2074/2005. Official Journal of the European Union, 69: 95-98, http://eurlex.europa. eu
Fang, Z., Wu, W., Lu, X., Zeng, L. (2014) Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. Biosens Bioelectron, 56: 192-197
FAO (2020) Meat and Meat Products. http://www.fao.org/ag/againfo/themes/en/meat/home. html , accessed on August 23, 2021
FAO (2009) How to Feed the World in 2050. http://www.fao.org/fileadmin/templates/wsfs/docs/ex pert_paper/How_to_Feed_the_World_in_2050.pdf, accessed on September 23, 2021
Fend, R., Geddes, R., Lesellier, S., Vordermeier, H.-.M., Corner, L.A.L., Gormley, E., Costello, E., Hewinson, R.G., Marlin, D.J., Woodman, A.C., Chambers, M.A. (2005) Use of an electric nose to diagnose Mycobacterium bovis infection in badgers and cattle. Journal of Clinical Microbiology, 43(4): 1745-1751
Fernandes, A.F.A., Dórea, J.R.R., de Magalhães, R.G.J. (2020) Image analysis and Computer Vision Applications in Animal Sciences: An overview. Frontiers in Veterinary Science, 7: 551269
Halachmi, I. (2015) Precision livestock farming applications. Wageningen Academic Publishers, 328, ISBN: 978 90-8686-268-9
Herinaina, A.I., Bindelle, J., Mercatoris, B., Lebeau, F. (2016) A review on the use of sensors to monitor cattle jaw movements and behaviour when grazing. Biotechnology, Agronomy and Society and Environment, 23(S1): 273-286
Hill, A., Brouwer, A., Donaldson, N., Lambton, S., Buncic, S., Griffiths, I. (2013) A risk and benefit assessment for visual-only meat inspection of indoor and outdoor pigs in the United Kingdom. Food Control, 30: 255-264
Jakubowski, T. (2015) Temperature Monitoring in the Transportation of Meat Products. Journal of Food Processing & Technology, 6(10)
Knobloch, H., Kohler, H., Commander, N., Reinhold, P., Turner, C., Chambers, M., Pardo, M., Sberveglieri, G. (2009) Volatile organic compounds (VOC) analysis for disease detection: proof of principle for field studies detecting paratuberculosis and brucellosis. AIP Conference Proceedings, 195-197
Laca, E.A., Devries, M.F.W. (2000) Acoustic measurement of intake and grazing behaviour of cattle. Grass and Forage Science, 55(2): 97-104
Lalović, M., Krajišnik, T., Mašić, N. (2020) Body condition as an indicator of cow welfare. Acta agriculturae Serbica, vol. 25, br. 50, str. 187-192
Leopold, J.H., van Hooijdonk, R.T., Sterk, P.J., Abu-Hanna, A., Schultz, M.J., Bos, L.D. (2014) Glucose prediction by analysis of exhaled metabolites: A systematic review. BMC Anesthesiology, 14: 46
Loisel, J., Duret, S., Cornu'ejols, A., Cagnon, D., Tardet, M., Derens-Bertheau, E., Laguerre, O. (2021) Cold chain break detection and analysis: Can machine learning help?. Trends in Food Science & Technology, 112: 391-399
Manzano, M., Cecchini, F., Fontanot, M., et al. (2015) OLED-based DNA biochip for Campylobacter spp. detection in poultry meat samples. Biosensors and Bioelectronics, 66: 271-276
Martins, S.A.M., Martins, V.C., Cardoso, F.A., Germano, J., Rodrigues, M., Duarte, C., Bexiga, R., Cardoso, S., Freitas, P.P. (2019) Biosensors for On-Farm Diagnosis of Mastitis. Frontiers in Bioengineering and Biotechnology, 7(186): 1-19
Mason-D`croz, D., Bogard, J.R., Herrero, M., Robinson, S., Sulser, T.B., Wiebe, K., Willenbockel, D., Godfray, H.C.J. (2020) Modelling the global economic consequences of a major African swine fever outbreak in China. Nature Food, 1: 221-228
Mcafee, A.J., Mcsorley, E.M., Cuskelly, G.J., Moss, B.W., Wallace, J.M., Bonham, M.P., et al. (2010) Red meat consumption: An overview of the risks and benefits. Meat Science, 84(1): 1-13
Mohebi, E., Marquez, L. (2015) Intelligent packaging in meat industry: An overview of existing solutions. Journal of Food Science and Technology, 52(7): 3947-3964
Montrose, A., Creedon, N., Sayers, R., Barry, S., O`riordan, A. (2015) Novel single gold nanowire-based electrochemical immunosensor for rapid detection of bovine viral diarrhoea antibodies in serum. Journal of Biosensors and Bioelectronics, 6(3): 1-7
MSU (2018) Feeding the world in 2050 and beyond -Part 1: Productivity challenges. Michigan State University Extension, https://www.canr.msu.edu/news/feedingthe-world-in-2050-and-beyond-part-1, accessed on September 22, 2021
Nastasijevic, I., Veskovic, S., Milijasevic, M. (2020) Meat Safety: Risk based assurance systems and novel technologies. Meat Technology, 61(2): 97-119
Nastasijević, I., Milanov, D., Velebit, B., Djordjević, V., Swift, C., Painset, A., Lakićević, B. (2017) Tracking of Listeria monocytogenes in meat establishment using Whole Genome Sequencing as a food safety management tool: A proof of concept. International Journal of Food Microbiology, 257: 157-164
Nastasijević, I., Branković, L.I., Petrović, Z. (2019) Precision livestock farming in the context of meat safety assurance system. u: The 60 th International Meat Industry Conference MEATCON2019. IOP Conf. Series: Earth and Environmental Science, 333
Nastasijević, I., Proscia, F., Bošković, M., Glišić, M., Blagojević, B., Sorgentone, S., Kirbis, A., Ferri, M. (2020) The European Union control strategy for Campylobacter spp. in the broiler meat chain. Journal of Food Safety, 40(5)
Neethirajan, S., Tuteja, S.K., Huang, S.-.T., Kelton, D. (2017) Recent advancement in biosensors technology for animal and livestock health management. Biosensors and Bioelectronics, 98: 398-407
Neethirajan, S., Ragavan, K.V., Weng, X. (2018) Agro-defense: Biosensors for food from healthy crops and animals. Trends in Food Science & Technology, 73: 25-44
Neethirajan, S., Kemp, B. (2021) Digital Livestock Farming. Sensing and Bio-Sensing Research, 32: 100408
Norton, T., Chen, C., Larsen, M.L.V., Berckmans, D. (2019) Precision livestock farming: building 'digital representations' to bring the animals closer to the farmer. Animal, 13(12): 3009-3017
OECD (2016) Agricultural outlook 2016-2025. http://www.fao.org/3/a-BO100e.pdf, accessed on June 23, 2020
Raheem, D., Shishaev, M., Dikovitsky, V. (2019) Food System Digitalization as a Means to Promote Food and Nutrition Security in the Barents Region. Agriculture, 9(8): 168
Shang, L., Heckelei, T., Gerullis, M.K., Borner, J., Rasch, S. (2021) Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction. Agricultural Systems, 190: 103074
Sikorski, Z. (1990) Seafood: Resources, Nutritional, Composition, and Preservation. CRC Press, 1 st Edition, ISBN 9781003068419
Sofos, J. (2008) Challenges to meat safety in the 21st century. Meat Science, 78: 3-13
Tarasov, A., Gray, D.W., Tsai, M.Y., Shields, N., Montrose, A., Creedon, N., Lovera, P., O`riordan, A., Mooney, M.H., Vogel, E.M. (2016) A potentiometric biosensor for rapid on-site disease diagnostics. Biosensors and Bioelectronics, 79: 669-678
Torky, M., Hassanein, A.E. (2020) Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges. Computers and Electronics in Agriculture, 178: 105476
Tullo, E., Finzi, A., Guarino, M. (2019) Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Science of the Total Environment, 650: 2751-2760
United Nations Department of Economic and Social Affairs (UNDESA) Population Division (2017) World population prospects: the 2017 revision, key findings and advanced tables. New York: UNDESA, Working paper No. ESA/P/WP/248, https://population.un.org/wpp/Publications/Files/WPP 2017_KeyFindings.pdf, accessed on September 22, 2021
Vidic, J., Manzano, M., Chang, C.M., Jaffrezic-Renault, N. (2017) Advanced biosensors for detection of pathogens related to livestock and poultry. Veterinary Research, 48(1): 1-22
Vongsawasdi, P., Noomhorm, A. (2015) Bioactive Compounds in Meat and their Functions. u: Noomhorm A., Ahmad I., Kumar A. [ur.] Functional Foods and Dietary Supplements: Processing Effects and Health Benefits, John Wiley & Sons, Ltd, 113-138
Wang, R., Wang, Y., Lassiter, K., Li, Y., Hargis, B., Tung, S., Berghman, L., Bottje, W. (2009) Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1. Talanta, 79(2): 159-164
WHO (2020) Food safety. Key facts. http://www.who.int/news-room/factsheets/detail/food-safety, accessed on September 24, 2021
Wu, W., Zhao, S., Mao, Y., Fang, Z., Lu, X., Zeng, L. (2015) A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification. Analytica Chimica Acta, 25(861): 62-68
Yamaguchi, M., Matsuda, Y., Sasaki, S., Sasaki, M., Kadoma, Y., Imai, Y., Niwa, D., Shetty, V. (2013) Immunosensor with fluid control mechanism for salivary cortisol analysis. Biosensors and Bioelectronics, 41: 186-191
Yang, M., Caterer, N.R., Xu, W., Goolia, M. (2015) Development of a multiplex lateral flow strip test for foot-and-mouth disease virus detection using monoclonal antibodies. Journal of Virological Methods, 221: 119-126
Yoo, S.M., Lee, S.Y. (2016) Optical biosensors for the detection of pathogenic microorganisms. Trends in Biotechnology, 34: 7-25
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/AASer2152183N
primljen: 28.09.2021.
prihvaćen: 08.12.2021.
objavljen u SCIndeksu: 07.01.2022.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka