Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:26
  • preuzimanja u poslednjih 30 dana:11

Sadržaj

članak: 5 od 107  
Back povratak na rezultate
2020, vol. 47, br. 2, str. 175-187
Modelovanje procesa osmotske dehidratacije pečuraka (Agaricus bisphorus) u melasi šećerne repe
aUniverzitet u Novom Sadu, Tehnološki fakultet
bInstitut za prehrambene tehnologije, Novi Sad

e-adresadanijela.pejic@uns.ac.rs
Projekat:
Osmotska dehidratacija hrane - energetski i ekološki aspekti održive proizvodnje (MPNTR - 31055)

Ključne reči: mineralni sastav; gubitak vlage; prirast suve materije; mikrobiološki kvalitet; hemijski sastav
Sažetak
Pečurke (Agaricus bisphorus) su osmotski dehidrirane u rastvorima melase šećerne repe različitih koncentracija (60%, 70% i 80%), na radnim temperaturama od 25, 35 i 45 °C tokom 0,5, 1, 1,5, 2, 3 i 5 h. Sadržaj vlage, aktivnost vode (aw), mikrobiološki kvalitet (ukupan broj bakterija, enterobakterije, ukupan broj kvasca i plesni) i sadržaj mineralnih materija (sadržaj kalijuma, kalcijuma, magnezijuma i gvožđa) određeni su na dobijenim uzorcima osmotski dehidriranih pečuraka. Metodi odzivnih površina i analize varijanse odabrani su da bi se procenili glavni efekti procesnih varijabli na mikrobiološki kvalitet, sadržaj mineralnih materija i hemijski sastav osmotski dehidriranih pečuraka. Povećanje vrednosti procesnih parametara osmotske dehidratacije dovelo je do značajnog povećanja sadržaja mineralnih materija (na primer, porast sadržaja K za 269,42% i sadržaja Ca za 939.03%), a smanjenja vrednosti aktivnosti vode (sa 0,941 na 0,811), mikrobiološkog opterećenja i relativnog sadržaja proteina (pad od 33,07%) u dehidriranim uzorcima pečuraka, što ukazuje na mogućnost produženog roka trajanja i pogodnosti ovako obrađenih pečuraka za dalju obradu. Osmotski dehidrirane pečurke mogu se smatrati novim funkcionalnim (polu)proizvodima, uzimajući u obzir njihov poboljšan nutritivni profil.
Dodaci

Reference
*** (2017) Microbiology of the food chain -Horizontal method for the detection and enumeration of Enterobacteriaceae -Part 2: Colony-count technique. ISO 21528-2:2017
*** (2013) Microbiology of the food chain -Horizontal method for the enumeration of microorganisms. Colony count at 30 C by the pour plate technique. ISO 4833-1:2013
*** (2000) Animal feeding stuffs -Determination of the contents of calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc -Method using atomic absorption spectrometry. ISO 6869:2000
*** (2008) Microbiology of food and animal feeding stuffs -Horizontal method for the enumeration of yeasts and moulds -Part 2: Colony count technique in products with water activity less than or equal to 0.95. ISO 21527-2:2008
*** (2010-2018) Pravilnik o opštim i posebnim uslovima higijene hrane u bilo kojoj fazi proizvodnje, prerade i prometa. Sl. glasnik RS, 72, 62
Ahmed, I., Qazi, I.M., Jamal, S. (2016) Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science and Emerging Technologies, 34: 29-43
Amami, E., Fersi, A., Khezami, L., Vorobiev, E., Kechaou, N. (2007) Centrifugal osmotic dehydration and rehydration of carrot tissue pre-treated by pulsed electric field. LWT - Food Science and Technology, 40(7): 1156-1166
Association of Official Analytical Chemists (AOAC) (2000) Official methods of analysis. Washington, DC
Chiralt, A., Fito, P. (2003) Transport mechanisms in osmotic dehydration: The role of the structure. Food Science and Technology International, 9(3): 179-186
Ciurzyńska, A., Kowalska, H., Czajkowska, K., Lenart, A. (2016) Osmotic dehydration in production of sustainable and healthy food. Trends in Food Science & Technology, 50: 186-192
Commission Regulation (EC) (2005) Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Official Journal of the EU, 338: 1-26
Cvetković, B., Pezo, L., Mišan, A., Mastilović, J., Kevrešan, Ž., Ilić, N., Filipčev, B. (2019) The effects of osmotic dehydration of white cabbage on polyphenols and mineral content. LWT -Food Science and Technology, 110: 332-337
Ćurčić, B., Pezo, L., Filipović, V., Nićetin, M., Knežević, V. (2015) Osmotic treatment of fish in two different solutions-artificial neural network model. Journal of Food Processing and Preservation, 39(6): 671-680
Darvishi, H., Azadbakht, M., Noralahi, B. (2018) Experimental performance of mushroom fluidized-bed drying: Effect of osmotic pretreatment and air recirculation. Renewable Energy, 120: 201-208
Doymaz, I. (2014) Drying kinetics and rehydration characteristics of convective hot-air dried white button mushroom slices. Journal of Chemistry, Article ID 453175
Erle, U., Schubert, H. (2001) Combined osmotic and microwave-vacuum dehydration of apples and strawberries. Journal of Food Engineering, 49(2-3): 193-199
Falade, K.O., Igbeka, J.C., Ayanwuyi, F.A. (2007) Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80(3): 979-985
Fernandes, F.A.N., Gallão, M.I., Rodrigues, S. (2009) Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2): 186-190
Filipović, I., Markov, S., Filipović, V., Filipović, J., Vujačić, V., Pezo, L. (2019) The effects of the osmotic dehydration parameters on reduction of selected microorganisms on chicken meat. Journal of Food Processing and Preservation, 43(10): 141-144
Filipović, V., Lončar, B., Nićetin, M., Knežević, V., Filipović, I., Pezo, L. (2014) Modeling countercurrent osmotic dehydration process of pork meat in molasses. Journal of Food Process Engineering, 37(5): 533-542
Filipović, V.S., Ćurčić, B.Lj., Nićetin, M.R., Plavšić, D.V., Koprivica, G.B., Mišljenović, N.M. (2012) Mass transfer and microbiological profile of pork meat dehydrated in two different osmotic solutions. Hemijska industrija, vol. 66, br. 5, str. 743-748
González-Pérez, J.E., López-Méndez, E.M., Luna-Guevara, J.J., Ruiz-Espinosa, H., Ochoa-Velasco, C.E., Ruiz-Lópeza, I.I. (2019) Analysis of mass transfer and morphometric characteristics of white mushroom (Agaricus bisporus) pilei during osmotic dehydration. Journal of Food Engineering, 240: 120-132
Gupta, P., Bhat, A., Chauhan, H., Ahmed, N., Malik, A. (2015) Osmotic dehydration of button mushroom. International Journal of Food and Fermentation Technology, 5(2): 177-182
Ispir, A., Toğrul, Đ.T. (2009) Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2): 166-180
Khan, M.R. (2012) Osmotic dehydration technique for fruits preservation: A review. Pakistan Journal of Food Sciences, 22(2): 71-85
Knežević, V., Pezo, L., Lončar, B., Filipović, V., Nićetin, M., Gorjanović, S., Šuput, D. (2019) Antioxidant capacity of nettle leaves during osmotic treatment. Periodica Polytechnica Chemical Engineering, 63(3): 491-498
Koprivica, G., Pezo, L., Ćurčić, B., Lević, Lj., Šuput, D. (2014) Optimization of osmotic dehydration of apples in sugar beet molasses. Journal of Food Processing and Preservation, 38(4): 1705-1715
Lončar, B., Filipović, V., Nićetin, M., Knežević, V., Gubić, J., Plavšić, D., Pezo, L. (2015) Characterisation of chicken breast cubes osmotically treated in sugar beet molasses. Journal on Processing and Energy in Agriculture, vol. 19, br. 4, str. 186-188
Mišljenović, N., Koprivica, G., Jevrić, L., Lević, Lj. (2011) Mass transfer kinetics during osmotic dehydration of carrot cubes in sugar beet molasses. Romanian Biotechnological Letters, 16(6): 6790-6799
Mújica-Paz, H., Valdez-Fragoso, A., Lopez-Malo, A., Palou, E., Welti-Chanes, J. (2003) Impregnation and osmotic dehydration of some fruits: effect of the vacuum pressure and syrup concentration. Journal of Food Engineering, 57(4): 305-314
Mundada, M., Hathan, B.S., Maske, S. (2011) Mass transfer kinetics during osmotic dehydration of pomegranate arils. Journal of Food Science, 76(1): 31-39
Nicetin, M.R., Pezo, L.L., Loncar, B.L. J., Filipovic, V.S., Suput, D.Z., Knezevic, V.M., Filipovic, J.S. (2017) The possibility of increasing the antioxidant activity of celery root during osmotic treatment. Journal of the Serbian Chemical Society, vol. 82, br. 3, str. 253-265
Nićetin, M., Lončar, B., Filipović, V., Knežević, V., Kuljanin, T., Pezo, L., Plavšić, D. (2015) The change in microbiological profile and water activity due to the osmotic treatment of celery leaves and root. Journal on Processing and Energy in Agriculture, vol. 19, br. 4, str. 193-196
Nićetin, M.R., Pezo, L.L., Lončar, B.Lj., Filipović, V.S., Šuput, D.Z., Zlatanović, S., Dojčinović, B.P. (2015) Evaluation of water, sucrose and minerals effective diffusivities during osmotic treatment of pork in sugar beet molasses. Hemijska industrija, vol. 69, br. 3, str. 241-251
Phisut, N. (2012) Factors affecting mass transfer during osmotic dehydration of fruits. International Food Research Journal, 19(1): 7-18
Qiu, L., Zhang, M., Tang, J., Adhikari, B., Cao, P. (2019) Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Research International, 116: 90-102
Rahman, M.S., Perera, C. (2007) Drying and food preservation. u: Rahman M. Shafiur [ur.] Handbook of food preservation, Boca Raton, FL: CRC Press, 2 nd ed
Ramaswamy, H.S. (2005) Osmotic drying. u: The Workshop on Drying of Food and Pharmaceuticals at the Fourth Asia Pacific Drying Conference, Kolkata, India
Rastogi, N.K., Raghavarao, K.S.M.S. (2004) Mass transfer during osmotic dehydration of pineapple: Considering Fickian diffusion in cubical configuration. LWT -Food Science and Technology, 37(1): 43-47
Rodrigues, A.E., Mauro, M.A. (2004) Water and sucrose diffusion coefficients in apple during osmotic dehydration. u: Proceedings of the 14 th International Drying Symposium, São Paulo
Sauvant, D., Perez, J.M., Tran, G. (2004) Tables de composition et de valeur nutritive des matières premières destinées aux animaux d'élevage: Porcs, volailles, bovins, ovins, caprins, lapins, chevaux, poisons. Versailles, France: INRA Editions, 2ème édition revue et corrigée
Shi, J., Xue, J.S. (2009) Application and development of osmotic dehydration technology in food processing. u: Ratti C. [ur.] Advances in food dehydration, USA: CRC Press
Silva, K.S., Fernandes, M.A., Mauro, M.A. (2014) Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering, 134: 37-44
Šarić, L.Ć., Filipčev, B.V., Šimurina, O.D., Plavšić, D.V., Šarić, B.M., Lazarević, J.M., Milovanović, I.Lj. (2016) Sugar beet molasses: Properties and applications in osmotic dehydration of fruits and vegetables. Food and Feed Research, vol. 43, br. 2, str. 135-144
Šobot, K., Laličić-Petronijević, J., Filipović, V., Nićetin, M., Filipović, J., Popović, Lj. (2019) Contribution of osmotically dehydrated wild garlic on biscuits' quality parameters. Periodica Polytechnica Chemical Engineering, 63(3): 499-507
Šuput, D., Lazić, V., Pezo, L., Gubić, J., Šojić, B., Plavšić, D., Lončar, B., Nićetin, M., Filipović, V., Knežević, V. (2019) Shelf life and quality of dehydrated meat packed in edible coating under modified atmosphere. Romanian Biotechnological Letters, 24(3): 545-553
Tortoe, C. (2010) A review of osmodehydration for food industry. African Journal of Food Science, 4(6): 303-324
Waliszewski, K.N., Delgado, J.L., García, M.A. (2002) Equilibrium concentration and water and sucrose diffusivity in osmotic dehydration of pineapple slabs. Drying Technology, 20: 527-538
 

O članku

jezik rada: engleski
vrsta rada: originalan članak
DOI: 10.5937/ffr47-28436
primljen: 16.09.2020.
revidiran: 08.12.2020.
prihvaćen: 10.12.2020.
objavljen onlajn: 15.12.2020.
objavljen u SCIndeksu: 19.01.2021.
metod recenzije: jednostruko anoniman
Creative Commons License 4.0

Povezani članci