Facta universitatis - series: Electronics and Energetics
kako citirati ovaj članak
podeli ovaj članak


  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0


članak: 5 od 5  
Back povratak na rezultate
Closed-system quantum logic network implementation of the Viterbi algorithm
(naslov ne postoji na srpskom)
University of Jordan, Jordan & is associated with the Office of Graduate Studies and Research (OGSR), Portland State University, USA

Ključne reči: error-correcting codes; error-control coding; coding; low power-computing; low-power circuits and systems; noise; quantum circuits; quantum computing; reversible circuits; reversible logic
(ne postoji na srpskom)
New convolution-based multiple-stream error-control coding and decoding schemes are introduced. The new coding method applies the reversibility property in the convolution-based encoder for multiple-stream error-control encoding and implements the reversibility property in the new reversible Viterbi decoding algorithm for multiple-stream error-correction decoding. The complete design of quantum circuits for the quantum realization of the new quantum Viterbi cell in the quantum domain is also introduced. In quantum mechanics, a closed system is an isolated system that can't exchange energy or matter with its surroundings and doesn't interact with other quantum systems. In contrast to open quantum systems, closed quantum systems obey the unitary evolution and thus they are reversible. Reversibility property in error-control coding can be important for the following main reasons: (1) reversibility is a basic requirement for low-power circuit design in future technologies such as in quantum computing (QC), (2) reversibility leads to super-speedy encoding/decoding operations because of the superposition and entanglement properties that emerge in the quantum computing systems that are naturally reversible and therefore very high performance is obtained, and (3) it is shown in this paper that the reversibility relationship between multiple-streams of data can be used for further correction of errors that are uncorrectable using the implemented decoding algorithm such as in the case of triple-errors that are uncorrectable using the classical irreversible Viterbi algorithm.
*** (1978) Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory, IT-24, 530-536
*** (1998) Reflections on the prize paper: Near optimum error-correcting coding and decoding turbo codes. IEEE Information Theory Society Newsletter, 48, br. 2, 24-31
*** (1954) Binary coding. IRE Transactions on Information Theory, PGIT-4, 23-28
*** (1991) Wireless digital communication: A view based on three lessons learned. IEEE Communications Magazine, 29, br. 9, 33- 36
*** (1963) Low-density parity-check codes. Cambridge: MIT Press
Abramson, N. (1963) Information theory and coding. New York: McGraw-Hill
Adamk, J.J. (1991) Foundations of coding. New York: Wiley
Akaiwa, Y. (1997) Introduction to digital mobile communication. New York: Wiley
al-Rabadi A.N. (2004) Reversible logic synthesis: From fundamentals to quantum computing. New York: Springer
Anderson, J.B., Mohan, S. (1991) Source and channel coding: An algorithmic approach. Boston, Mass: Kluwer
Anderson, J.B., Taylor, D.P. (1978) A bandwidth-efficient class of signal space codes. IEEE Transactions on Information Theory, IT-24, 703-712
Atal, B.S., Schroeder, M.R. (1984) Stochastic coding of speech signals at very low bit rates. u: IEEE International Conference on Communications, May
Bahi, L.R., Cocke, J., Jelinek, F., Raviv, J. (1974) Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory / IT, 20, 284-287
Battail, G. (1989) Coding for the gaussian channel: The promise of weighted-output decoding. International Journal of Satellite Communications, 7(3): 183
Benedetto, S., Montorsi, G. (1996) Unveiling turbo codes: some results on parallel concatenated coding schemes. IEEE Transactions on Information Theory, 42(2): 409
Bennett, C. (1973) Logical reversibility of computation. IBM J. of Research and Development, vol. 17, str. 525-532
Berlekamp, E.R. (1968) Algebraic coding theory. New York: McGraw-Hill
Berrou, C., Glavieux, A. (1996) Near optimum error-correcting coding and decoding: Turbo codes. IEEE Transactions on Communications, 44(10): 1261
Berrou, C., Glavieux, A., Thitimajashima, P. (1993) Near Shannon limit error-correction coding: Turbo codes. u: IEEE International Conference on Communications, Geneva, May, str. 1064-1070
Bhargava, V.K. (1983) Forward error correction schemes for digital communications. IEEE Communications Magazine, 21(1): 11
Bhargava, V.K., Haccoun, D., Matyas, R., Nuspl, P. (1981) Digital communications by satellite: Modulation, multiple access, and coding. New York: Wiley
Bose, R.C., Ray-Chaudhuri, D.K. (1960) On a class of error correcting binary group codes. Information and Control, 3(1): 68
Brey, B.B. (2006) The Intel microprocessors: Architecture, programming, and interfacing. Pearson Education Inc
Buzo, A., Gray, A., Gray, R.M., Markel, J.D. (1980) Speech coding based upon vector quantization. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP, 28, 562-574
Clark, G.C.Jr., Cain, J.B. (1981) Error-correction coding for digital communications. New York: Plenum Publishers
Cover, T.M., Thomas, J.A. (1991) Elements of information theory. New York, itd: Wiley
Daneshgaran, F., Mondin, M. (1999) Design of interleavers for turbo codes: iterative interleaver growth algorithms of polynomial complexity. IEEE Transactions on Information Theory, 45(6): 1845
Divsalar, D. (1996) Turbo codes: MILCOM tutorial. San Diego, November
Elias, P. (1955) Coding for noisy channels. u: IRE Convention Record, Part 4, 37-46
Forney, G.D. Jr. (1973) The Viterbi algorithm. Proceedings of the IEEE, 61, br. 3, 268-278
Forney, G.D.Jr., Eyuboglu, M.V. (1991) Combined equalization and coding using precoding. IEEE Communications Magazine, 29, br. 12, 25-34
Frey, B.J., Mackay, D.J.C. (1999) Irregular turbocodes. u: Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing (Allerton House), Illinois, September
Gabor, D. (1946) Theory of communication. J IEE, vol. 93, str. 429-457
Gallager, R.G. (1962) Low-density parity-check codes. IRE Transactions on Information Theory, vol. IT-8, str. 21-28, Jan
Gitlin, R.D., Hayes, J.F., Weinstein, S.B. (1992) Data communications principles. New York: Plenum
Golay, M.J.E. (1949) Note on digital coding. Proceedings of the IRE, 37, 657
Golomb, S.W. (1967) Shift register sequences. San Francisco: Holden-Day
Hagelbarger, D.W. (1959) Recurrent codes: Easily mechanized burst-correcting binary codes. Bell System Tech. J., 38, 969-984
Hagenauer, J., Offer, E., Papke, L. (1996) Iterative decoding of binary block and convolutional codes. IEEE Transactions on Information Theory, 42(2): 429
Hamming, R.W. (1950) Error detecting and error correcting codes. Bell System Tech. J., 29, 147-160
Haykin, S. (2001) Communication systems. New York, itd: Wiley
Heegard, C., Wicker, S.B. (1999) Turbo coding. Boston: Kluwer Academic Publishers
Huffman, D.A. (1952) A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9): 1098
Jacobs, I.M. (1974) Practical applications of coding. IEEE Transactions on Information Theory, IT-20, 305-310
Jayant, N.S. (1986) Coding speech at low bit rates. IEEE Spectrum, 23, br. 8, 58-63
Jayant, N.S., Noll, P. (1984) Digital coding of waveforms principles and applications to speech and video. Englewood Cliffs, NJ, itd: Prentice Hall
Kobayashi, H. (1971) Correlative level coding and maximum-likelihood decoding. IEEE Transactions on Information Theory, IT-17, 586-594
Kschischang, F.R., Frey, B.J. (1998) Iterative decoding of compound codes by probability propagation in graphical models. IEEE Journal on Selected Areas in Communications, 16(2): 219
Lafrance, P. (1990) Fundamental concepts in communication. Englewood Cliffs, N.J: Prentice-Hall
Landauer, R. (1961) Irreversibility and heat generation in the computing process. IBM J. Res. Dev, vol. 5, str. 183-191
Lathi, B.P. (1995) Modern digital and analog communication systems. Oxford University Press
Lee, E.A., Messerschmitt, D.G. (1994) Digital communication. Boston: Kluwer Academic Publishers
Leiner, B.M., Cerf, V.G., Clark, D.D., Kohn, R.E., Kleinrock, L., Lynch, D.C., Postel, J., Roberts, L.G., Wolff, S. (1997) A brief history of the internet. Communications of the ACM, 40, 102-108
Lender, A. (1966) Correlative level coding for binary-data transmission. IEEE Spectrum, 3, br. 2, 104-115
Lin, S., Costello, D.J., Miller, M.J. (1984) Automatic-repeat-request error-control schemes. IEEE Communications Magazine, 22(12): 5
Lin, S., Costello, D.J. (1983) Error control coding: Fundamentals and applications. Englewood Cliffs: Prentice-Hall
Lodge, J., Young, R., Hoeher, P., Hagenauer, J. (1993) Separable map 'filters' for the decoding of product and concatenated codes. u: IEEE International Conference on Communications, May, Geneva, Proceedings, str. 1740-1745
Lucky, R.W., Salz, J., Weldon, E. (1968) Principles of data communication. New York: McGraw-Hill
Mackay, D.J.C. (1999) Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory, 45(2): 399
Mackay, D.J.C., Neal, R. (1997) Near Shannon limit performance of low density parity check codes. IEEE Electron. Lett, 33, no. 6, 457-458
MacKay, D.J.C., Wilson, S.T., Davey, M.C. (1999) Comparison of constructions of irregular Gallager codes. IEEE Transactions on Communications, 47(10): 1449
Macwilliams, F.J., Sloane, N.J.A. (1977) The theory of error-correcting codes. Amsterdam: North-Holland
McEliece, R.J. (1977) The theory of information and coding: A mathematical framework for communication. Reading, Mass: Addison-Wesley
McEliece, R.J., MacKay, D.J.C., Cheng, J.F. (1998) Turbo decoding as an instance of Pearl's 'belief propagation' algorithm. IEEE Journal on Selected Areas in Communications, 16(2): 140
Michelson, A.M., Levesque, A.H. (1985) Error-control techniques for digital communication. New York: Wiley
Middleton, D. (1960) An introduction to statistical communication theory. New York: McGraw-Hill
Moher, M.L., Gulliver, T.A. (1998) Cross-entropy and iterative decoding. IEEE Transactions on Information Theory, 44(7): 3097
Muthukrishnan, A., Stroud, C.R. (2000) Multivalued logic gates for quantum computation. Phys. Rev., A vol. 62, br. 5, str. 052309, Oct
Nielsen, M.A., Chuang, I.L. (2000) Quantum computation and quantum information. Cambridge, itd: Cambridge University Press / CUP
Papoulis, A. (1984) Probability, random variables, and stochastic processes. New York, itd: McGraw-Hill
Pasupathy, S. (1977) Correlative coding: A bandwidth-efficient signaling scheme. IEEE Communications Magazine, 15(4): 4
Paulraj, A., Papadias, C. (1997) Space-time processing for wireless communications. IEEE Signal Processing Magazine, vol. 14 br. 6, Nov, 49-83
Peterson, W.W., Weldon, E.J.Jr. (1972) Error correcting codes. Cambridge, Mass: M.I.T. Press, Mass, 2nd ed
Picton, P. (1991) Optoelectronic multi-valued conservative logic. Int. J. of Optical Computing, vol. 2, str. 19-29
Rabiner, L.R. (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77, str. 257-286
Rappaport, T.S. (1996) Wireless communications: Principles and practice. Piscataway: IEEE Press
Reed, I.S., Solomon, G. (1960) Polynomial codes over certain finite fields. Journal of SIAM, 8, 300-304
Root, W.L. (1987) Remarks, mostly historical, on signal detection and signal parameter estimation. Proceedings of the IEEE, 75(11): 1446
Roy, K., Prasad, S. (2000) Low-power CMOS VLSI circuit design. John Wiley
Ruiz, A., Cioffi, J.M., Kasturia, S. (1992) Discrete multiple tone modulation with coset coding for the spectrally shaped channel. IEEE Transactions on Communications, 40(6): 1012
Schlegel, C. (1997) Trellis coding. Piscataway, NJ: IEEE Press
Shannon, C.E. (1949) Communication in the presence of noise. Proceedings of the IRE, 37(1): 10
Shannon, C.E. (1949) Communication theory of secrecy systems. Bell System Technical Journal, vol. 28, str. 656-715
Shannon, C.E., Weaver, W. (1949) Mathematical theory of communication. Urbana-Chicago, IL: University of Illinois Press
Shannon, C.E. (1948) A mathematical theory of communication. Bell Syst. Tech. J., vol. 27, str. 379-423, 623-656
Sklar, B. (1997) A primer on turbo code concepts. IEEE Communications Magazine, 35(12): 94
Steele, R. (1975) Delta modulation systems. New York: Wiley
Tanenbaum, A.S. (1995) Computer networks. New Jersey: Prentice Hall, 2nd ed
Thompson, T.M. (1983) From error-correcting codes through sphere packings to simple groups. Washington, DC: Mathematical Association of America
Ungerboeck, G. (1982) Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, IT-28, 55-67
Viterbi, A.J. (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, IT-13, 260-269
Viterbi, A.J., Omura, J.K. (1979) Principles of digital communication and coding. New York: McGraw-Hill
Vos, A.D. (1999) Reversible computing. Progress in Quantum Electronics, vol. 23, str. 1-49
Wei, L.F. (1984) Rotationally invariant convolutional channel coding with expanded signal space: Part I: 180. IEEE Journal on Selected Areas in Communications / SAC, 2, 659-671
Wei, L.F. (1984) Rotationally invariant convolutional channel coding with expanded signal space, part II: Nonlinear codes. IEEE Journal on Selected Areas in Communications, SAC-2, 672-686
Wicker, S.B., Bhargava, V.K., ur. (1994) Reed-solomon codes and their applications. New York: Institute of Electrical and Electronics Engineers / IEEE
Wilson, S.G. (1996) Digital modulation and coding. Englewood Cliffs, NJ, itd: Prentice Hall
Yates, R.D., Goodman, D.J. (1999) Probability and stochastic processes: A friendly introduction for electrical and computer engineers. New York: Wiley
Yuen, J.H., ur. (1983) Deep space telecommunications systems engineering. New York: Plenum
Ziemer, R.E., Tranter, W.H. (1990) Principles of communications. Boston, Mass: Houghton Miflin, 3rd ed
Ziv, J., Lempel, A. (1977) A universal algorithm for sequential data compression. IEEE Transactions on Information Theory, IT-23, 337-343

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.2298/FUEE0901001A
objavljen u SCIndeksu: 20.05.2009.

Povezani članci

Nema povezanih članaka