Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:98
  • preuzimanja u poslednjih 30 dana:86
članak: 1 od 10  
Back povratak na rezultate
Vojnotehnički glasnik
2018, vol. 66, br. 3, str. 580-596
jezik rada: engleski
vrsta rada: pregledni članak
objavljeno: 26/06/2018
doi: 10.5937/vojtehg66-16670
Creative Commons License 4.0
Pregled KDD Cup '99, NSL-KDD i Kyoto 2006+ baza podataka
Serbian Armed Forces, General Staff, Department for Telecommunication and Informatics (J-6), Center for Applied Mathematics and Electronics, Belgrade

e-adresa: adanijela@ptt.rs

Sažetak

U radu je prikazan pregled tri baze podataka: KDD Cup '99, NSL-KDD i Kyoto 2006+, koje se često koriste u istraživanju detekcije upada u računarske mreže. KDD Cup '99 baza podataka sastoji se od pet miliona zapisa, od kojih svaki sadrži 41 atribut, koji mogu da klasifikuju napade u četiri klase: Probe, DoS, U2R i R2L. KDD Cup '99 baza podataka ne može da reflektuje realne podatke, jer je generisana simulacijom na virtuelnoj računarskoj mreži. Iz NSL-KDD baze uklonjeni su redundantni zapisi i duplikati iz KDD Cup '99 trening i test-baze, respektivno. Kyoto 2006+ baza formirana je na osnovu podataka trogodišnjeg realnog mrežnog saobraćaja, koji su označeni kao: normalan (nije napad), napad (poznat napad) i nepoznat napad. Kyoto 2006+ baza sadrži 14 statističkih atributa izdvojenih iz KDD Cup '99 baze i dodatnih 10 atributa.

Ključne reči

detekcija upada; računarska mreža; KDD Cup '99; NSL-KDD; Kyoto 2006+

Reference

*** KDD CUP '99 dataset. [Internet] Available at: http://kdd.ics.uci.edu/dataset/kddcup’99/kddcup’99.html. Accessed: 12.02.2018
Aggarwal, P., Sharma, S.K. (2015) Analysis of KDD dataset attributes: Class wise for intrusions detection. u: Procedia Computer Science, 57, pp.842-851, https://doi.org/10.1016/j.procs.2015.07.490
al-Dhafian B., Ahmad, I., al-Ghamid A. (2015) An overview of the current classification techniques. u: Conference on Security International and Management, July 27-30, Las Vegas, USA, 82-88
Bukola, O., Adetunmbi, A.O. (2016) Auto-immunity dendritic cell algorithm. International Journal of Computer Applications, New York, 137(2), pp.10-17, March 2016. Foundation of Computer Science. Available at: https://doi.org/10.5120/ijca2016908689
Jeya, G.P., Ravichandran, M., Ravichandran, C.S. (2012) Efficient classifier for R2L and U2R attacks. International Journal of Computer Applications, 45(21), pp.28-32. Available at: http://www.ijcaonline.org/archives/volume45/number21/7076-9751. Accessed: 10.01.2018
Kavitha, P., Usha, M. (2014) Anomaly based intrusion detection in WLAN using discrimination algorithm combined with Naïve Bayesian classifier. Journal of Theoretical and Applied Information Technology, 62(1), pp.77-84. Available at: http://www.jatit.org/volumes/Vol62No1/11Vol62No1.pdf. Accessed: 11.01.2018
Kolez, A., Chowdhury, A., Alspector, J. (2003) Data duplication: An imbalance problem?. u: ICML 2003 Workshop on Learning from Imbalanced Data Sets (II), August 21, Whashington
Maček, N., Milosavljević, M. (2013) Critical analysis of the KDD Cup ’99 data set and research methodology for machine learning. u: 57th ETRAN conference, June 3-6, Zlatibor, Proceedings, pp. (VI 2.3.1-4.)
Nkiama, H., Said, S.Z.M., Saidu, M. (2016) A subset feature elimination mechanisms for intrusion detection system. International Journal of Advanced Computer Science and Application, 7(4), pp.148-157
Paliwal, S., Gupta, R. (2012) Denial-of-service, probing & remote to user (R2L) attack detection using genetic algorithm. International Journal of Computer Applications, 60(19), pp.57-62. Available at: http://www.ijcaonline.org/archives/volume60/number19/9813-4306. Accessed: 12.02.2018
Protić, D.D. (2016) Neuronska kriptografija. Vojnotehnički glasnik, vol. 64, br. 2, str. 483-495
Revathi, S., Malathi, A. (2018) A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning Techniques for Intrusion Detection. International Journal of Engineering Research & Technology, 2(12), pp. 1848-1853
SIGKDD KDD Cup. KDD Cup (1999) Computer network intrusion detection. www.kdd.org, 13.02.2018
Singh, R., Kumar, H., Singla, R.K. (2015) An intrusion detection system using network traffic profiling and online sequential extreme learning machine. Expert Systems With Applications, 42(22), pp.8609-8624
Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K. (2011) Statistical analysis of honeypot data and building of Kyoto 2006+Dataset for NIDS evaluation. u: 1st Work-shop on Building Anal. Datasets and Gathering Experience Returns for Security. Salzburg, April 10-13, Proc, pp.29-36. Available at: https://doi.org/10.1145/1978672.1978676
Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A. (2009) A detailed analysis of the KDD CUP 99 data set. u: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Institute of Electrical and Electronics Engineers (IEEE), str. 1-6