Article metrics

  • citations in SCindeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[=>]
  • visits in previous 30 days:13
  • full-text downloads in 30 days:2
article: 1 from 85  
Back back to result list
Vojnosanitetski pregled
2019, vol. 76, iss. 5, pp. 510-517
article language: English
document type: Original Paper
doi:10.2298/VSP170114108M

Creative Commons License 4.0
Advanced magnetic resonance techniques in early differentiation of pseudoprogression versus progression in the patients with glioblastoma multiforme
aUniverzitet u Beogradu, Medicinski fakultet, Institut za onkologiju i radiologiju Srbije
bUniversity of Belgrade, Faculty of Physical Chemistry

e-mail: j.m.mihailovic@gmail.com

Abstract

Background/Aim. The diagnosis of glioblastoma multiforme progression may be confounded by a phenomena termed pseudoprogression (PSP) and pseudoresponse (RCT) which has become more common with the adoption of radiation therapy with concurrent and adjuvant application of temozolomide (CRT). Distinguishing of these phenomena is based on the follow-up scans since no single imaging method or technique is yet capable of performing their discrimination. In this study, we evaluated the dynamic susceptibility contrast (DSC perfusion) imaging and magnetic resonance (MR) spectroscopy to predict the prognosis and time to progression in the patients with glioblastoma multiforme. Methods. Fourty patients with primary glioblastoma multiforme were included in the analysis. The patients were examined in 3rd week after surgery and 10th week after the beginning of CRT. The Mr exams were performed using the 1.5 T Mr scanner (Avanto; Siemens, Erlangen, Germany). The maps of perfusion parameters and time-to-peak (TTP) parameter were calculated using the DPTools v3.79 software. The 3D CSI PRESS Mr spectroscopy was performed in the area corresponding to the contrast enhancement on the T1W images. Results. Thirty-two of the 40 patients had progressive disease and 8 had pseudoprogression. Progressive disease showed the mean time of the peak values of 33 ± 7 s in 3rd and 30 ± 5 s in 10th week with no statistical significance between these two periods (p > 0.05). The patients with pseudoprogression showed the mean time of the peak values of 32 ± 8 s in 3rd week and 43 ± 9 s in 10th week; it was statistically significant difference (p < 0.05) was which favors better response to therapy. The spectroscopy results showed presence of glycine peak at 3.56 ppm in 6 patients with progressive disease which was not seen on spectra with pseudoprogression. Conclusion. The observed significant differences in the TTP values for PSP and RCT can provide basis for distinguishing two entities. The presence of glycine peak in the Mr spectra could be a marker of RCT.

Keywords

References

Baek, H.J., Kim, H.S., Kim, N.S., Choi, Y.J., Kim, Y.J. (2012) Percent Change of Perfusion Skewness and Kurtosis: A Potential Imaging Biomarker for Early Treatment Response in Patients with Newly Diagnosed Glioblastomas. Radiology, 264(3): 834-843
Barajas, R.F., Chang, J.S., Segal, M.R., Parsa, A.T., McDermott, M.W., Berger, M.S., Cha, S. (2009) Differentiation of Recurrent Glioblastoma Multiforme from Radiation Necrosis after External Beam Radiation Therapy with Dynamic Susceptibility-weighted Contrast-enhanced Perfusion Mr Imaging. Radiology, 253(2): 486-496
Brandes, A.a., Tosoni, A., Spagnolli, F., Frezza, G., Leonardi, M., Calbucci, F., Franceschi, E. (2008) Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: Pitfalls in neurooncology. Neuro-Oncology, 10(3): 361-367
Carlsson, S.K., Brothers, S.P., Wahlestedt, C. (2014) Emerging treatment strategies for glioblastoma multiforme. EMBO Molecular Medicine, 6(11): 1359-1370
Cha, J., Kim, S.T., Kim, H.T., Kim, B.T., Kim, Y.K., Lee, J.Y., Jeon, P., Kim, K.H., Kong, D., Nam, D.H. (2014) Differentiation of Tumor Progression from Pseudoprogression in Patients with Posttreatment Glioblastoma Using Multiparametric Histogram Analysis. American Journal of Neuroradiology, 35(7): 1309-1317
Cha, S., Yang, L., Johnson, G., Lai, a., Chen, M.H., Tihan, T., i dr. (2006) Comparison of Microvascular Permeability Measurements, Ktrans, Determined with Conventional Steady-State T1-Weighted and First-Pass T2*-Weighted Mr Imaging Methods in Gliomas and Meningiomas. Am J Neuroradiol, 27(2): 40917-40917
Chinnaiyan, P., Kensicki, E., Bloom, G., Prabhu, a., Sarcar, B., Kahali, S., Eschrich, S., Qu, X., Forsyth, P., Gillies, R. (2012) The Metabolomic Signature of Malignant Glioma Reflects Accelerated Anabolic Metabolism. Cancer Research, 72(22): 5878-5888
Chu, H.H., Choi, S.H., Ryoo, I., Kim, S.C., Yeom, J.a., Shin, H., Jung, S.C., Lee, L.a., Yoon, T.J., Kim, T.M., Lee, S., Park, C., Kim, J.C., Sohn, C., Park, S., Kim, H.I.l. (2013) Differentiation of True Progression from Pseudoprogression in Glioblastoma Treated with Radiation Therapy and Concomitant Temozolomide: Comparison Study of Standard and High-b-Value Diffusion-weighted Imaging. Radiology, 269(3): 122024-122024
da Cruz, H.L.C.Jr., Rodriguez, I., Domingues, R.C., Gasparetto, E.L., Sorensen, a.G. (2011) Pseudoprogression and pseudoresponse: Imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol, 32(11): 197885-197885
Easaw, J.C., Mason, W.P., Perry, J., Laperrière, N., Eisenstat, D.D., del Maestro, R., Bélanger, K., Fulton, D., Macdonald, D. (2011) Canadian recommendations for the treatment of recurrent or progressive glioblastoma multiforme. Current Oncology, 18(3): 12636-12636
Gahramanov, S., Raslan, A.M., Muldoon, L.L., Hamilton, B.E., Rooney, W.D., Varallyay, C.G., Njus, J.M., Haluska, M., Neuwelt, E.a. (2011) Potential for Differentiation of Pseudoprogression from True Tumor Progression with Dynamic Susceptibility-Weighted Contrast-Enhanced Magnetic Resonance Imaging Using Ferumoxytol vs. Gadoteridol: A Pilot Study. International Journal of Radiation Oncology *Biology* Physics, 79(2): 514-523
Gahramanov, S., Muldoon, L.L., Varallyay, C.G., Li, X., Kraemer, D.F., Fu, R., Hamilton, B.E., Rooney, W.D., Neuwelt, E.a. (2013) Pseudoprogression of Glioblastoma after Chemoand Radiation Therapy: Diagnosis by Using Dynamic Susceptibility-weighted Contrast-enhanced Perfusion Mr Imaging with Ferumoxytol versus Gadoteridol and Correlation with Survival. Radiology, 266(3): 842-852
Hattingen, E., Lanfermann, H., Quick, J., Franz, K., Zanella, F.E., Pilatus, U. (2009) 1H Mr spectroscopic imaging with short and long echo time to discriminate glycine in glial tumours. Magnetic Resonance Materials in Physics, Biology and Medicine, 22(1): 33-41
Hu, L.S., Eschbacher, J.M., Heiserman, J.E., Dueck, a.C., Shapiro, W.R., Liu, S., Karis, J.P., Smith, K.A., Coons, S.W., Nakaji, P., Spetzler, R.F., Feuerstein, B.G., Debbins, J., Baxter, L.C. (2012) Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro-Oncology, 14(7): 919-930
Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, a.L., Kafri, R., Kirschner, M.W., Clish, C.B., Mootha, V.K. (2012) Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation. Science, 336(6084): 1040-1044
Ken, S., Vieillevigne, L., Franceries, X., Simon, L., Supper, C., Lotterie, J.a., Filleron, T., Lubrano, V., Berry, I., Cassol, E., Delannes, M., Celsis, P., Cohen-Jonathan, E.M., Laprie, A. (2013) Integration method of 3D Mr spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost. Radiation Oncology, 8(1): 1-1
Kong, D.S., Kim, S.T., Kim, E.T., Lim, D.H., Kim, W.S., Suh, Y.L., Lee, J., Park, K., Kim, J.H., Nam, D.H. (2011) Diagnostic Dilemma of Pseudoprogression in the Treatment of Newly Diagnosed Glioblastomas: The Role of Assessing Relative Cerebral Blood Flow Volume and Oxygen-6-Methylguanine-DNA Methyltransferase Promoter Methylation Status. American Journal of Neuroradiology, 32(2): 382-387
Law, M., Yang, S., Babb, J.S., Knopp, E.A., Golfinos, J.G., Zagzag, D., i dr. (2004) Comparison of Cerebral Blood Volume and Vascular Permeability from Dynamic Susceptibility Contrast-Enhanced Perfusion Mr Imaging with Glioma Grade. AJNR Am J Neuroradiol, 25(5): 74655-74655
Lehnhardt, F., Bock, C., Röhn, G., Ernestus, R., Hoehn, M. (2005) Metabolic differences between primary and recurrent human brain tumors: A 1H NMR spectroscopic investigation. NMR in Biomedicine, 18(6): 371-382
Leimgruber, A., Ostermann, S., Yeon, E.J., Buff, E., Maeder, P.P., Stupp, R., Meuli, R.a. (2006) Perfusion and diffusion MRI of glioblastoma progression in a four-year prospective temozolomide clinical trial. International Journal of Radiation Oncology *Biology* Physics, 64(3): 869-875
Macdonald, D.R., Cascino, T.L., Schold, S.C.Jr., Cairncross, J.G. (1990) Response criteria for phase II studies of supratentorial malignant glioma. Journal of Clinical Oncology, 8(7): 1277-1280
Mangla, R., Singh, G., Ziegelitz, D., Milano, M.T., Korones, D.N., Zhong, J., Ekholm, S.E. (2010) Changes in Relative Cerebral Blood Volume 1 Month after Radiation-Temozolomide Therapy Can Help Predict Overall Survival in Patients with Glioblastoma. Radiology, 256(2): 575-584
Morris, J.G., Grattan-Smith, P., Panegyres, P.K., o'Neill P., Soo, Y.S., Langlands, a.O. (1994) Delayed cerebral radiation necrosis. QJM: An International Journal of Medicine, 87(2): 11929-11929
Nasel, C., Azizi, A., Veintimilla, a., Mallek, R., Schindler, E. (2000) A standardized method of generating time-to-peak perfusion maps in dynamic-susceptibility contrast-enhanced Mr imaging. AJNR Am J Neuroradiol, 21(7): 11958-11958
Neumann-Haefelin, T., Wittsack, H.J., Wenserski, F., Siebler, M., Seitz, R.J., Mödder, U., i dr. (1999) Diffusion-and perfusion-weighted MRI: The DWI/PWI mismatch region in acute stroke. Stroke, 30(8): 15917-15917
Rempp, K.A., Brix, G., Wenz, F., Becker, C.R., Gückel, F., Lorenz, W.J. (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced Mr imaging. Radiology, 193(3): 637-641
Righi, V., Andronesi, O.C., Mintzopoulos, D., Black, P.M., Tzika, a.A. (2010) High-resolution magic angle spinning magnetic resonance spectroscopy detects glycine as a biomarker in brain tumors. Int J Oncol, 36(2): 3016-3016
Song, Y.S., Choi, S.H., Park, C.K., Yi, K.S., Lee, W.J., Yun, T.J., Kim, T.M., Lee, S.J., Kim, J., Sohn, C., Park, S.K., Kim, H.I.l., Jahng, G., Chang, K. (2013) True Progression versus Pseudoprogression in the Treatment of Glioblastomas: A Comparison Study of Normalized Cerebral Blood Volume and Apparent Diffusion Coefficient by Histogram Analysis. Korean Journal of Radiology, 14(4): 662-662
Sugahara, T., Korogi, Y., Tomiguchi, S., Shigematsu, Y., Ikushima, I., Kira, T., i dr. (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced Mr imaging for differentiating tumor recurrence from nonneoplastic contrastenhancing tissue. AJNR Am J Neuroradiol, 21(5): 9019-9019
Suh, C.H., Kim, H.S., Choi, Y.J., Kim, N.S., Kim, S.J. (2013) Prediction of Pseudoprogression in Patients with Glioblastomas Using the Initial and Final Area Under the Curves Ratio Derived from Dynamic Contrast-Enhanced T1-Weighted Perfusion Mr Imaging. American Journal of Neuroradiology, 34(12): 2278-2286
Sundgren, P.C. (2009) Mr Spectroscopy in Radiation Injury. American Journal of Neuroradiology, 30(8): 1469-1476
Tsien, C., Galbán, C.J., Chenevert, T.L., Johnson, T.D., Hamstra, D.A., Sundgren, P.C., i dr. (2010) Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol, 28(13): 2293920-2293920
Tugnoli, V., Tosi, M.R., Barbarella, G., Bertoluzza, A., Ricci, R., Trevisan, C. (1996) In vivo 1H Mrs and in vitro multinuclear Mr study of human brain tumors. Anticancer Res, 16(5A): 28919-28919
Verma, N., Cowperthwaite, M.C., Burnett, M.G., Markey, M.K. (2013) Differentiating tumor recurrence from treatment necrosis: A review of neuro-oncologic imaging strategies. Neuro-Oncology, 15(5): 515-534
Wen, P.Y., Macdonald, D.R., Reardon, D.a., Cloughesy, T.F., Sorensen, a.Gregory, Galanis, E., Degroot, J., Wick, W., Gilbert, M.R., Lassman, A.B., Tsien, C., Mikkelsen, T., Wong, E.T., Chamberlain, M.C. (2010) Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group. Journal of Clinical Oncology, 28(11): 1963-1972
Ye, Z.C., Sontheimer, H. (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res, 59(17): 438391-438391
Ye, zu-Cheng C., Rothstein, J.D., Sontheimer, H. (1999) Compromised Glutamate Transport in Human Glioma Cells: Reduction-Mislocalization of Sodium-Dependent Glutamate Transporters and Enhanced Activity of Cystine-Glutamate Exchange. Journal of Neuroscience, 19(24): 10767-10777
Young, R.J., Gupta, A., Shah, A.D., Graber, J.J., Chan, T.a., Zhang, Z., Shi, W., Beal, K., Omuro, A.M. (2013) MRI perfusion in determining pseudoprogression in patients with glioblastoma. Clinical Imaging, 37(1): 41-49