Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 4 od 42  
Back povratak na rezultate
2019, vol. 76, br. 3, str. 233-240
Praćenje oblika zubnog luka odstupanjima fitovanih splajnova tokom ortodontske terapije primenom 3D digitalnih modela
aUniverzitet u Beogradu, Stomatološki fakultet, Klinika za ortopediju vilica
bVojnotehnički institut - VTI, Beograd

e-adresanmajstorovic961@gmail.com
Projekat:
Results and developed methods presented in the paper are part of the Bilateral Scientific Project EMONA-G: Engineering modelling of orthodontics native geometry, supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia and the Ministry of Education, Science and Sport of the Republic of Slovenia

Sažetak
Uvod/Cilj. Istraživači u oblasti stomatologije, posebno kliničari, već dugo se bave istraživanjima koja se odnose na modeliranje i definisanje oblika i parametara zubnog luka. Danas, kada je 3D digitalno modeliranje postalo uobičajena praksa u stomatologiji, promenio se i prilaz modeliranju, analizi i sintezi u ortodonciji. Klinička istraživanja oblika zubnog luka direktno se odnose na estetsku i funkcionalnu analizu zubnog niza (nivelacija, okluzija, zagrižaj). Cilj rada bio je da se poveća ponovljivost i preciznost definisanja i određivanja koordinatnog sistema vilice i definišu matematički kriterijumi za praćenje i ocenjivanje ortodontske terapije. Metode. U radu su koršćeni gipsani modeli vilice, optički skener sa strukturisanom svetlošću, 3D digitalni modeli vilice i Computer Aided Design (CAD) i inženjerski alati. Sprovedeno je podešavanje koordinatnog sistema i fitovanje splajnova trećeg, četvrtog, petog, šestog, sedmog i osmog stepena. Rezultati. Splajnovi (trećeg, četvrtog, petog, šestog, sedmog i osmog stepena) fitovani su u odnosu na početno stanje (K0), za svih 10 uzastopnih kolona (K1, K2, K3,... K10). Svi splajnovi su fitovani u 12 tačaka, sa leve i desne strane vilice: 6-5-4-3-2-1-1-2-3-4-5-6. Dat je tabelarni i grafički prikaz maksimalnih i prosečnih odstupanja fitovanih krivih linija dentalnog luka u sukcesivnim kontrolama. Zaključak. Parametri maksimalne i prosečne greške fitovanja krivih linija dentalnog luka konvergiraju vrednostima koje su manje od tačnosti korišćenih optičkih skenera. Prosečna greška fitovanja daje opštu sliku celokupnog dentalnog luka u svakoj od faza terapije. Maksimalna greška fitovanja ukazuje na tačno određeni zub gde su odstupanja najveća.
Za ovaj članak postoji povezani rad (ispravka, opoziv ili komentar) koji je dostupan ovde.
Reference
*** (2016) Siemens PLM NX10 documentation. https://docs.plm.automation.siemens.com/tdoc/nx/10.O.3/nx_help/#uid:index [July 2016]
Adaškevičius, R., Vasiliauskas, A. (2009) Evaluation of Dental Arch Form Using 3D Dental Cast Scanning Technology. JEEE Med Technol, 93(5): 99-103
AlHarbi, S., Alkofide, E.A., AlMadi, A. (2008) Mathematical Analyses of Dental Arch Curvature in Normal Occlusion. Angle Orthod, 78(2), str. 281-287
Andrews, L.F., Andrews, W.A. (2000) The six elements of orofacial harmony. Andrews J, 1(1): 13-22
ATOS (2016) Manuel for user. http://www.gom.com/metrology-systems/atos/atos-triplescan.html, July 2016
Ball, R.L., Miner, R. M., Will, L.A., Arai, K. (2010) Comparison of dental and apical base arch forms in Class II Division 1 and Class I malocclusions. American Journal of Orthodontics and Dentofacial Orthopedics, 138(1): 41-50
Burns, A., Dowling, A.H., Garvey, T.M., Fleming, G.J. (2014) The reliability of Little's Irregularity Index for the upper dental arch using three dimensional (3D) digital models. Journal of Dentistry, 42(10): 1320-1326
Ender, A., Mehl, A. (2013) Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. Journal of Prosthetic Dentistry, 109(2): 121-128
Engineering Modeling of Orthodontics Native Geometry (EMONA-G) (2017) Common European Research Classification Scheme (CERIF) code: B730; Bilateral scientific and technological cooperation Slovenia-Serbia 2016-2017. Belgrade: Ministry of Education, Science and Technological Development of Republic of Serbia, http://www.mpn.gov.rs/odobreni-projekti-sa-slovenijomza-period-2016-2017/
Gavin, H. (2016) The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Durham: Duke University - Department of Civil and Environmental Engineering
Kook, Y., Bayome, M., Park, S., Cha, B., Lee, Y., Baek, S. (2009) Overjet at the Anterior and Posterior Segments: Three-Dimensional Analysis of Arch Coordination. Angle Orthodontist, 79(3): 495
Majstorović, N. (2016) Monitoring of teeth nivelation based on 3D digital models. University of Belgrade, Faculty of Dentistry, dissertation
Majstorović, N., Čerče, L., Kramar, D., Soković, M., Glišić, B., Majstorović, V., Živković, S. (2017) Examination of scanner precision by analysing orthodontic parameters. Balkan Journal of Dental Medicine, vol. 21, br. 1, str. 32-43
Majstorović, N.V., Živković, S., Glišić, B. (2017) The advanced model definition and analysis of orthodontic parameters on 3D digital models. Srpski arhiv za celokupno lekarstvo, vol. 145, br. 1-2, str. 49-57
Muhamad, A., Nezar, W., Azzaldeen, A. (2015) The curve of dental arch in normal occlusion. Open Sci j Clin Med, 3(2): 47-54
Noroozi, H., Nik, T.H., Saeeda, R. (2001) The dental arch form revisited. Angle Orthod, 71(5), str. 586-589
Park, K.H., Bayome, M., Park, J.H., Lee, J.W., Baek, S., Kook, Y. (2015) New classification of lingual arch form in normal occlusion using three dimensional virtual models. Korean Journal of Orthodontics, 45(2): 74
Park, T., Lee, S., Lee, K. (2012) A method for mandibular dental arch superimposition using 3D cone beam CT and orthodontic 3D digital model. Korean Journal of Orthodontics, 42(4): 169
Pokhariyal, G. (2015) Humans dental arch shapes. GJMR J Dent Otolaryngol, 15(4): 1-4
Slaj, M., Spalj, S., Jelusic, D., Slaj, M. (2011) Discriminant factor analysis of dental arch dimensions with 3-dimensional virtual models. American Journal of Orthodontics and Dentofacial Orthopedics, 140(5): 680-687
The American Board of Orthodontics (ABO) (2013) Digital model requirements. original release, 04.23.2013, https://www.americanboardortho.com/media/1157/abodigital-model-requirements.pdf, [2016 September 22]
Zhang, Y., Gu, J., Jiang, J., Sun, X. (2013) Motion Control Point Optimization of Dental Arch Generator. International Journal of u- and e- Service, Science and Technology, 6(5): 49-56
Zilberman, O., Huggare, J.A.V., Parikakis, K.A. (2003) Evaluation of the validity of tooth size and arch width measurements using conventional and three-dimensional virtual orthodontic models. Angle orthodontist, 73(3): 301-6
Živković, S. (2014) Coordinate metrology in manufacturing of the complex spatial forms with applications to the aerodynamic surfaces. Monographic series: Scientific-technical information, (in Serbian)
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/VSP161212067M
objavljen u SCIndeksu: 25.04.2019.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0

Povezani članci

Srps arh celokup lekarstvo (2019)
Novi metod fotogrametrijskih merenja studijskih modela u ortodonciji
Arapović-Savić Marijana, i dr.

Balkan J Stomatology (2010)
Shape of the upper alveolar arch in Albanian subjects
Leka Nikollaq, i dr.

Stomatološki glasnik Srbije (2018)
Primena fotogrametrije za prostorne analize u ortodontskoj dijagnostici
Arapović-Savić Marijana, i dr.

prikaži sve [6]