Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:0
članak: 4 od 5  
Back povratak na rezultate
Chemical Industry and Chemical Engineering Quarterly / CICEQ
2011, vol. 17, br. 4, str. 477-483
jezik rada: engleski
vrsta rada: naučni članak
objavljeno: 27/01/2012
doi: 10.2298/CICEQ110406032A
Uticaj koncentracije natrijum-hlorida na tačkastu koroziju austenitnog nerđajućeg čelika AISI 304l
aDepartment of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, Bangladesh
bDepartment of Chemistry, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh

e-adresa: mayeedul180@yahoo.com

Sažetak

Ispitivana je tačkasta korozija kod austenitnog nerđajućeg čelika u vodenom rastvoru hlorida korišćenjem elektrohemijske metode. Za određivanje karakteristika korozije korišćeni su: merenje korozionog potencijala, potenciodinamički eksperimenti, eksperimenti u području potencijala pasivizacije i mikroskopska ispitivanja. Kao eksperimentalni parametri su korišćeni koncentracija hloridnih jona, vreme uranjanja i anodni potencijal. Merenje korozionog potencijala zajedno sa mikroskopskim ispitivanjima ukazuju na to da se tačkasta korozija javlja na površini u odsustvu primenjenog potencijala posle 6 sati potapanja u rastvor NaCl koncentracije od ili iznad 3,5% pri pH 2. Potenciodinamička ispitivanja pokazuju da se korozioni potencijal i potencijal tačkaste korozije smanjuju, dok se gustina struje u oblasti pasivizacije povećava sa porastom koncentracije hloridnih jona. Utvrđena je linearna zavisnost između potencijala tačkaste korozije i koncentracije hloridnih jona. Analiza rezultata ukazuje na to da je šest hloridnih jona uključeno u proces rastvaranja jona gvožđa prilikom tačkaste korozije austenitnog nerđajućeg čelika.

Ključne reči

Reference

*** (1994) Standard Guide G48-92. u: Annual Book of ASTM Standards, Philadelphia: ASTM, str. 652
Almarshad, A.I., Jamal, D. (2004) Electrochemical investigations of pitting corrosion behaviour of type UNS S31603 stainless steel in thiosulfate-chloride environment. Journal of Applied Electrochemistry, 34(1): 67-70
Bentour, A., Diamond, S., Berke, N.S. (1997) Steel corrosion in concrete. London: Chapman & Hall
Bouttemy, M., Bertoglio, M., Lorang, G. (2005) Mon-COR-07: Effect of ageing on growths mechanisms of passive layers formed on Iron-Chromium alloys (5 to 30 Cr at. %) in borate buffer solutions. www.intersience.wiley.com (September)
Brooks, A.R., Clayton, C.R., Doss, K., Lu, Y.C. (1986) On the Role of Cr in the Passivity of Stainless Steel. Journal of The Electrochemical Society, 133(12): 2459
Dong, J., Zhou, J., Wang, H., Ling, J., Shi, L. (2000) Journal of Materials Science, 35(11): 2653-2657
Ferreira, M.G.S., da Cunha, B.M., Hakiki, N.E., Goodlet, G., Montemor, M.F., Simoes, A.M.P. (2002) Semiconducting properties of oxide and passive films formed on AISI 304 stainless steel and alloy 600. Journal of the Brazilian Chemical Society, 13(4), 433-440
Foley, R.T., Nguyen, T.H. (1982) The chemical nature of aluminum corrosion. V. Energy transfer in aluminum dissolution. Journal of the Electrochemical Society, 129(3), 464-7
Galvele, J.R. (1981) Transport processes in passivity breakdown: II. Full hydrolysis of the metal ions. Corrosion Science, 21(8): 551-579
Han, J., Brown, B.N., Young, D., Nesic, S. (2010) Mesh-capped probe design for direct pH measurements at an actively corroding metal surface. Journal of Applied Electrochemistry, 40(3): 683-690
Hastuty, S., Nishikata, A., Tsuru, T. (2010) Pitting corrosion of Type 430 stainless steel under chloride solution droplet. Corrosion Science, 52(6), 2035-2043
Hoar, T.P., Mears, D.C., Rothwell, G.P. (1965) The relationships between anodic passivity, brightening, and pitting. Corrosion Science, 5(4), 279-89
Ibrahim, M.A.M., el Abd, R.S.S., Hamza, M.M. (2009) Corrosion behavior of some austenitic stainless steels in chloride environments. Materials Chemistry and Physics, 115(1), 80-85
Kudo, K., Shibata, T., Okamoto, G., Sato, N. (1968) Ellipsometric and radiotracer measurements of the passive oxide film on iron in neutral solution. Corrosion Science, 8(11), 809-14
Martin, F.A., Bataillon, C., Cousty, J. (2008) In situ AFM detection of pit onset location on a 304L stainless steel. Corrosion Science, 50(1): 84-92
Mazhar, A.A., Badawy, W.A., Abou-Romia, M.M. (1987) Surf. Coat. Technol, 29, 335-345
Nakayama, T., Oshida, Y. (1968) Identification of the initial oxide films on 18-8 stainless steel in high-temperature water. Corrosion, 24(10), 336-7
Okamoto, G. (1973) Passive film of 18-8 stainless steel structure and its function. Corrosion Science, 13(6), 471-89
Ramana, K.V.S., Anita, T., Mandal, S., Kaliappan, S., Shaikh, H., Sivaprasad, P.V., Dayal, R.K., Khatak, H.S. (2009) Effect of different environmental parameters on pitting behavior of AISI type 316L stainless steel: Experimental studies and neural network modeling. Materials & Design, 30(9), 3770-3775
Ramya, S., Anita, T., Shaikh, H., Dayal, R.K. (2010) Laser Raman microscopic studies of passive films formed on type 316LN stainless steels during pitting in chloride solution. Corrosion Science, 52(6), 2114-2121
Schweitzer, P.A. (2004) Encyclopedia of Corrosion Technology. CRC Press
Schweitzer, P.A. (2003) Metallic materials:Physical, mechanical, and corrosion properties. CRC Press
Sedricks, A.J. (1979) Corrosion of stainless steels. New York: John Wiley
Stirrup, B.N., Hampson, N.A., Midgley, I.S. (1975) Pit formation in relation to the etching of aluminium in chloride solutions. Journal of Applied Electrochemistry, 5(3): 229-235
Strehblow, H.H., Marcus, P., Oudar, J., ur. (1995) Corrosion mechanisms in theory and practice. New York: Marcel Dekker, str. 265
Szauer, T., Jakobs, J. (1976) The pitting corrosion of low alloy and mild steels. Corrosion Science, 16(12), 945-9
Tomcsanyi, L., Varga, K., Bartik, I., Horanyi, G., Maleczki, E. (1989) Electrochemical study of the pitting corrosion of aluminum and its alloys - II. study of the interaction of chloride ions with the passive film on aluminum and initiation of pitting corrosion. Electrochimica Acta, 34(6), 855-9
Yin, Y., Niu, L., Lu, M., Guo, W., Chen, S. (2009) In situ characterization of localized corrosion of stainless steel by scanning electrochemical microscope. Applied Surface Science, 255(22), 9193-9199