Metrika članka

  • citati u SCindeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:28
  • preuzimanja u poslednjih 30 dana:14
članak: 5 od 20  
Back povratak na rezultate
Zaštita materijala
2016, vol. 57, br. 1, str. 119-127
jezik rada: srpski
vrsta rada: naučni članak
doi:10.5937/ZasMat1601119N


Fundamentalni aspekti procesa elektrohemijskog taloženja olova - nukleacija i rast
aUniverzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM, Beograd
bUniverzitet u Beogradu, Centar za multidisciplinarne studije, Beograd

e-adresa: nnikolic@ihtm.bg.ac.rs

Projekat

Elektrohemijska sinteza i karakterizacija nanostrukturiranih funkcionalnih materijala za primenu u novim tehnologijama (MPNTR - 172046)

Sažetak

U ovoj sveobuhvatnoj studiji su analizirani procesi nukleacije i rasta olova iz elektrolita različite vrste i sastava. Procesi nukleacije olova su ispitani analizom potenciostatskih strujnih prelaza, dok procesi rasta su ispitani analizom olovnih taloga tehnikom skenirajuće elektronske mikroskopije (SEM). Nađeno je da nukleacija olova sledi Šarifkerov i Hilsov (SH) model koji se zasniva na 3-D trenutnoj nukleaciji praćenoj difuziono kontrolisanim rastom. Procesima elektrohemijskog taloženja su bile dobijene različite morfologije olovnih čestica, počev od granula dobijenih na malim prenapetostima iz razblaženih elektrolita do veoma razgranatih dendrita na višim prenapetostima. Dobijene morfologije su bile korelisane sa odgovarajućim polarizacionim karakteristikama. Nađeno je da su regularne heksagonalne čestice formirane taloženjem u omskoj kontroli, dok nepravilni kristali označeni kao prekursori dendrita i dendriti različitog oblika (igličasti, primarni (P) i sekundarni (S) dendriti) su bili formirani u mešovito omsko-difuziono i difuziono kontrolisanom taloženju. Igličasti i primarni (P) dendriti su prvenstveno formirani iz osnovnog (nitratnog), dok sekundarni (S) i tercijarni (T) dendriti su formirani iz kompleksnih (acetatnog i hidroksilnog) elektrolita.

Ključne reči

Reference

Avellaneda, C.O., Napolitano, M.A., Kaibara, E.K., Bulhões, L.O.S. (2005) Electrodeposition of lead on ITO electrode: influence of copper as an additive. Electrochimica Acta, 50(6): 1317-1321
Bockris, J.O.M., Reddy, A.K.N., Gamboa-Aldeco, M. (2000) Modern electrochemistry. Dordrecht, itd: Kluwer, Vol. 2A, Page 1107
Carlos, I., Malaquias, M., Oizumi, M., Matsuo, T. (2001) Study of the influence of glycerol on the cathodic process of lead electrodeposition and on its morphology. Journal of Power Sources, 92(1-2): 56-64
Ehlers, C., König, U., Staikov, G., Schultze, J.W. (2001) Role of surface states in electrodeposition of Pb on n-Ge(111). Electrochimica Acta, 47(1-2): 379-385
Hazza, A., Pletcher, D., Wills, R. (2004) A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(ii). Physical Chemistry Chemical Physics, 6(8): 1773
Kozlov, V., Bicelli, L.P. (1999) Influence of the nature of metals on the formation of the deposit's polycrystalline structure during electrocrystallization. Journal of Crystal Growth, 203(1-2): 255-260
Mostany, J., Parra, J., Scharifker, B.R. (1986) The nucleation of lead from halide-containing solutions. Journal of Applied Electrochemistry, 16(3): 333-338
Mostany, J., Mozota, J., Scharifker, B.R. (1984) Three-dimensional nucleation with diffusion controlled growth. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 177(1-2): 25-37
Nikolic, N., Popov, K., Ivanovic, E., Brankovic, G. (2014) Effect of orientation of initially formed grains on the final morphology of electrodeposited lead. Journal of the Serbian Chemical Society, 79(8): 993-1005
Nikolić, N.D., Popov, K.I., Ivanović, E.R., Branković, G., Stevanović, S.I., Živković, P.M. (2015) The potentiostatic current transients and the role of local diffusion fields in formation of the 2D lead dendrites from the concentrated electrolyte. Journal of Electroanalytical Chemistry, 739: 137-148
Nikolić, N.D., Maksimović, V.M., Branković, G., Živković, P.M., Pavlović, M.G. (2013) Influence of the type of electrolyte on the morphological and crystallographic characteristics of lead powder particles. Journal of the Serbian Chemical Society, vol. 78, br. 9, str. 1387-1395
Nikolić, N.D., Popov, K.I. (2014) A New Approach to the Understanding of the Mechanism of Lead Electrodeposition. u: Đokić S.S. [ur.] Electrodeposition: Theory and Practice, Series: Modern Aspects of Electrochemistry, Springer, str. 85-132
Nikolić, N.D., Branković, G., Lačnjevac, U.Č. (2011) Formation of two-dimensional (2D) lead dendrites by application of different regimes of electrolysis. Journal of Solid State Electrochemistry, 16(6): 2121-2126
Nikolić, N.D., Ivanović, E.R., Branković, G., Lačnjevac, U.Č., Stevanović, S.I., Stevanović, J.S., Pavlović, M.G. (2015) Electrochemical and Crystallographic Aspects of Lead Granular Growth. Metallurgical and Materials Transactions B, 46(4): 1760-1774
Nikolić, N.D., Vaštag, Đ., Maksimović, V.M., Branković, G. (2014) Morphological and crystallographic characteristics of lead powder obtained by electrodeposition from an environmentally friendly electrolyte. Transactions of Nonferrous Metals Society of China, 24(3): 884-892
Nikolić, N.D., Maksimović, V.M., Branković, G. (2013) Morphological and crystallographic characteristics of electrodeposited lead from a concentrated electrolyte. RSC Advances, 3(20): 7466
Nikolić, N.D., Popov, K.I., Živković, P.M., Branković, G. (2013) A new insight into the mechanism of lead electrodeposition: Ohmic-diffusion control of the electrodeposition process. Journal of Electroanalytical Chemistry, 691: 66-76
Nikolić, N.D., Vaštag, Đ., Živković, P.M., Jokić, B., Branković, G. (2013) Influence of the complex formation on the morphology of lead powder particles produced by the electrodeposition processes. Advanced Powder Technology, 24(3): 674-682
Pavlov, D. (1993) Premature capacity loss (PCL) of the positive lead/acid battery plate: a new concept to describe the phenomenon. Journal of Power Sources, 42(3): 345-363
Pletcher, D., Wills, R. (2004) A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(ii). Physical Chemistry Chemical Physics, 6(8): 1779
Popov, K.I., Živković, P.M., Nikolić, N.D. (2011) A mathematical model of the current density distribution in electrochemical cells. Journal of the Serbian Chemical Society, vol. 76, br. 6, str. 805-822
Popov, K.I., Djokić, S.S., Grgur, B.N. (2002) Fundamental Aspects of Electrometallurgy. New York: Kluwer Academic/Plenum Publishers
Rashkova, B., Guel, B., Pötzschke, R.T., Staikov, G., Lorenz, W.J. (1998) Electrodeposition of Pb on n-Si(111). Electrochimica Acta, 43(19-20): 3021-3028
Scharifker, B., Hills, G. (1983) Theoretical and experimental studies of multiple nucleation. Electrochimica Acta, 28, 879-889
Scharifker, B.R., Mostany, J. (1984) Three-dimensional nucleation with diffusion controlled growth. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 177(1-2): 13-23
Winand, R. (1994) Electrodeposition of metals and alloys: New results and perspectives. Electrochimica Acta, 39(8-9): 1091-1105
Wong, S.M., Abrantes, L.M. (2005) Lead electrodeposition from very alkaline media. Electrochimica Acta, 51(4): 619-626
Wranglen, G. (1960) Dendrites and growth layers in the electrocrystallization of metals. Electrochimica Acta, 2, 130
Yao, C., Liu, M., Zhang, P., He, X., Li, G., Zhao, W., Liu, P., Tong, Y. (2008) Tuning the architectures of lead deposits on metal substrates by electrodeposition. Electrochimica Acta, 54(2): 247-253
Zhang, Q.B., Hua, Y.X. (2014) Electrochemical synthesis of copper nanoparticles using cuprous oxide as a precursor in choline chloride-urea deep eutectic solvent: nucleation and growth mechanism. Phys. Chem. Chem. Phys., 16(48): 27088-27095